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Three genes, DYX1C1, DCDC2, and KIAA0319, have been previously associated with dyslexia, neuronal migration, and ciliary function.
Three polymorphisms within these genes, rs3743204 (DYX1C1), rs793842 (DCDC2), and rs6935076 (KIAA0319) have also been linked to
normal variability of left temporoparietal white matter volume connecting the middle temporal cortex to the angular and supramarginal
gyri. Here, we assessed whether these polymorphisms are also related to the cortical thickness of the associated regions during childhood
development using a longitudinal dataset of 76 randomly selected children and young adults who were scanned up to three times each, 2
years apart. rs793842 in DCDC2 was significantly associated with the thickness of left angular and supramarginal gyri as well as the left
lateral occipital cortex. The cortex was significantly thicker for T-allele carriers, who also had lower white matter volume and lower
reading comprehension scores. There was a negative correlation between white matter volume and cortical thickness, but only white
matter volume predicted reading comprehension 2 years after scanning. These results show how normal variability in reading compre-
hension is related to gene, white matter volume, and cortical thickness in the inferior parietal lobe. Possibly, the variability of gray and
white matter structures could both be related to the role of DCDC2 in ciliary function, which affects both neuronal migration and axonal
outgrowth.
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Introduction
Developmental dyslexia, or reading disability, is one of the most
common learning disorders among children (Shaywitz et al.,
1990; Katusic et al., 2001). A different pattern of activation in the
left temporoparietal, inferior parietal, and occipitotemporal cor-
tical regions has been observed in impaired compared with nor-
mal readers (Shaywitz et al., 2002, 2004; Richlan et al., 2011;
Richlan, 2012). Dyslexia has also been associated with structural
deviations of gray and white matter in corresponding regions
(Klingberg et al., 2000; Deutsch et al., 2005; Silani et al., 2005;
Vinckenbosch et al., 2005; Niogi and McCandliss, 2006; Kron-

bichler et al., 2008; Altarelli et al., 2013). These differences could
rather be seen as the end distribution of a continuum in the
general population, without any diagnosis of dyslexia (Klingberg
et al., 2000; Nagy et al., 2004; Beaulieu et al., 2005; Deutsch et al.,
2005; Niogi and McCandliss, 2006; Darki et al., 2012).

A small number of candidate genes, such as DYX1C1, DCDC2,
and KIAA0319, have been associated with increased risk for read-
ing impairment (Taipale et al., 2003; Cope et al., 2005; Meng et
al., 2005; Schumacher et al., 2006; Eicher et al., 2014) as well as
with neuronal migration during cortical development (Wang et
al., 2006; Gabel et al., 2010; Peschansky et al., 2010; Szalkowski et
al., 2012). At the cellular level, DYX1C1 and DCDC2 have been
implicated in regulating ciliary growth and function (Massinen et
al., 2011; Chandrasekar et al., 2013). Impaired ciliary function
may lead to misplacement of neurons in the cerebral cortex and
may hinder the axonal outgrowth (Higginbotham et al., 2012).
Thus, genetic polymorphisms associated with ciliar functioning
may lead to disturbances in both white and gray matter in the
brain.

Gray matter volume alterations in association with single nu-
cleotide polymorphisms (SNPs) in or near the DYX1C1, DCDC2,
and KIAA0319 genes have been reported in some genetic imaging
assessments (Meda et al., 2008; Jamadar et al., 2011). Functional
MRI studies have also detected an association of genetic variants

Received March 26, 2014; revised Aug. 26, 2014; accepted Sept. 16, 2014.
Author contributions: F.D., J.K., and T.K. designed research; F.D. performed research; F.D., M.P.-J., and H.M.

analyzed data; F.D., M.P.-J., H.M., J.K., and T.K. wrote the paper.
This work was supported by the Knut and Alice Wallenberg Foundation, The Swedish Research Council, and a

Swedish Royal Bank Tercentennial Foundation grant in the program “Learning and Memory in Children and Young
Adults” to J.K. and T.K. We thank Jens Gisselgård, Ylva Samuelsson, Douglas Sjöwall, Iroise Dumontheil, Benjamin
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in KIAA0319 and DCDC2 with brain activation in superior tem-
poral sulcus, as well as the left anterior inferior parietal and right
temporal gyrus and lateral occipital cortex (LOC; Cope et al.,
2012; Pinel et al., 2012).

Three SNPs, rs3743204 (DYX1C1), rs793842 (DCDC2), and
rs6935076 (KIAA0319), showed significant effects on the normal
variability of white matter volume in left temporoparietal regions
in which the white matter pathways connect the middle temporal
gyrus (MTG) to the angular gyrus (AG) and the supramarginal
gyrus (SMG; Darki et al., 2012). These cortical regions have been
reported to be functionally and structurally different in individ-
uals in whom dyslexia has been diagnosed compared with normal
readers (Paulesu et al., 2001; McCandliss et al., 2003; Carreiras et
al., 2009).

Knowing the involvement of the dyslexia susceptibility genes
DYX1C1, DCDC2, and KIAA0319 in neuronal migration and ciliary
function, we aimed to assess whether the individual genotypes of the
SNPs rs3743204, rs793842, and rs6935076 have any significant effect
on the normal variability of cortical thickness in the temporal and
parietal associated regions during development.

Materials and Methods
Participants
Seventy-six typically developing children and young adults, already in-
cluded in our previous study (Darki et al., 2012), were scanned for the
third time as a part of a longitudinal study (Söderqvist et al., 2010). The
participants (41 males and 35 females) were in nine different age groups
(6, 8, 10, 12, 14, 16, 18, 20, and 25 years of age) with no reports of any
neurological or psychological disorders. This study was approved by the
ethics committee of the Karolinska University Hospital. Informed con-
sent was provided by the participants or the parents of children �18 years
of age.

Genotyping
Thirteen SNPs located in or in close vicinity to three dyslexia susceptibil-
ity genes (DYX1C1: rs3743204, rs3743205, and rs17819126; DCDC2:
rs793842, rs793862, rs807701, rs2328819 rs2792682, rs7751169, and
rs9460974; KIAA0319: rs4504469, rs6935076, and rs2143340) were geno-
typed with matrix-assisted laser desorption/ionization–time-of-flight
mass spectrometry with iPLEX Gold assays, as previously described
(Darki et al., 2012).

We previously (Darki et al., 2012) reported that three of these SNPs,
rs3743204 (DYX1C1), rs793842 (DCDC2), and rs6935076 (KIAA0319)
showed significant effects on the normal variability of white matter vol-
ume for two imaging rounds (i.e., the first two time points of the longi-
tudinal dataset). Here, we analyzed the structural MRI data from all three
time points to investigate the association of these SNPs with white matter
structure and the cortical thickness. The association between these SNPs
and behavior measures was also assessed.

Behavioral assessment
All subjects were assessed with a reading comprehension task using nar-
rative and expository texts from the Progress in International Reading
literacy Trend Study (PIRLS 2001 T) and The International Association
for the Evaluation of Educational Achievement Reading Literacy Study
1991. Reading comprehension tests included 77 items for four age groups
including individuals ranging in age from 8 to 25 years and were admin-
istered either individually or in groups of 2–20 participants in a class-
room (Söderqvist et al., 2010). Different age groups thus received
different, but overlapping, sets of items. An item response theory analysis
(Bond and Fox, 2003) was then used to achieve a reading ability z-score
for each subject, which was used for further analysis.

Additionally, a word decoding task called “word chains” was tested.
This is similar to the English Woodcock Johnson Word-ID test, in which
the subjects had 72 sets of written words, each consisting of three words
without spaces in between. The task was to read as many words as possi-
ble during 2 min and mark with a pencil where the spaces should occur.

The score is based on the number of words that has been marked cor-
rectly (Woodcock, 1987).

Structural brain imaging and analysis
T1-weighted spin echo scans were collected with a 1.5 T Avanto scanner
(Siemens Medical System) using a 3D magnetization-prepared rapid ac-
quisition gradient echo sequence with TR � 2300 ms, TE � 2.92 ms,
256 � 256 matrix size, 176 sagittal slices, and 1 mm 3 isotropic voxel size.

Voxel-based morphometry, which segmented the brain into gray mat-
ter, white matter, and CSF, was performed on structural data collected
across all three rounds of data collection using SPM5, Diffeomorphic
Anatomical Registration Through Exponentiated Lie Algebra (DARTEL)
toolbox (Ashburner, 2007). The structural data of all individuals were
first segmented into gray matter, white matter, and CSF using a mixture–
model cluster analysis, which identifies the voxels by matching their
intensities to the tissue types and combines this information with a priori
knowledge from probability maps of these three tissues. Next, the tissue-
segmented images were iteratively registered to each other to create a
template. Then the images were subjected to a nonlinear modulation by
multiplying the registered images with the Jacobian determinants. The
modulation reflects the probability of being locally expanded or con-
tracted to fit to the template. The modulated white matter segmented
images were registered to Montreal Neurological Institute (MNI) space
by affine transformation and then smoothed with an 8 mm Gaussian
kernel for further statistical analysis.

SNP genotypes and white matter volume
All white matter segmented images were analyzed by second-level SPM
analysis, using a flexible factorial design in SPM8, to assess the variation
of white matter volume with respect to genotype variability. Flexible
factorial design allowed specifying the participants and it considered the
repeated measures for all individuals by including subjects and testing
rounds as factors. The SNPs rs3743204 (DYX1C1), rs793842 (DCDC2),
and rs6935076 (KIAA0319) were entered separately as a main factor in
the model. The sample sizes by genotype are as follows: rs3743204 (GG,
n � 53; GT/TT, n � 23); rs793842 (CC, n � 21; CT, n � 41; TT, n � 14);
and rs6935076 (CC, n � 30; CT, n � 39; TT, n � 7). Age, sex, handed-
ness, and total white matter volume were used as covariates, and the
interaction of SNP, as the main factor, with age and sex was also added.
This part of the analysis was repeated in the same way as the analysis
previously published (Darki et al., 2012), but this time considering all
three time points of the longitudinal data. We aimed to assess whether
the effect of the previously published SNPs remains significant when
adding the image data from the third time point. The exploratory analysis
was performed on the cluster level with nonstationary cluster extent
correction at p � 0.05 (Hayasaka et al., 2004) to find the main effect of
SNPs. We then corrected for multiple comparisons of three SNPs and set
the threshold of significance at p � 0.016 (Bonferroni correction of three
tests). The significant regions were then saved as regions of interest
(ROIs) and their overlapping area was used as a seed region for white
matter tractography.

Diffusion tensor imaging and fiber tracking
Diffusion tensor imaging (DTI) with a field of view of 230 � 230 mm 2, a
128 � 128 matrix size, 40 slices, 2.5 mm slice thickness, and a b value of
1000 s/mm 2, and was performed in 64 gradient directions with one b0
image collected in the beginning. Eddy current and head motions were
corrected with affine registration to the reference volume (b0 image)
using FSL software. The diffusion tensor parameters were then esti-
mated, and subsequently the DTI and fractional anisotropy (FA) data
were constructed. Nonlinear registration was performed using Tract-
Based Spatial Statistics (TBSS) version 1.2 (Smith et al., 2006), in FSL
(Smith et al., 2004) to align all FA images to the mean FA image. TBSS
back projection was used to map the significant ROI to the FA image of all
individuals. Deterministic fiber tracking was then applied by ExploreDTI
version 4.7.3 (Leemans et al., 2009), with 1 mm step size, considering an
FA threshold of 0.15 and an angular difference of 30°, to find the white
matter fibers passing through the significant ROI on individual DTI
space. The traced white matter pathways of all individuals were then
transformed to the mean FA template using the TBSS method for
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non-FA images in which the corresponding nonlinear transformation
matrices for FA images was used to register the traced white matter
pathways to template. The aligned white matter pathways were then bina-
rized and averaged across all subjects. The averaged map of white matter
pathways was then overlapped with the Harvard-Oxford cortical structural
atlas to find the cortical regions connected by white matter pathways.

Cortical thickness measurement
The cortical thickness of the structural images was estimated using an
automatic longitudinal stream in Freesurfer (Reuter et al., 2012) by con-
structing models for the boundary between gray and white matter. First,
a within-subject template was created for each subject using inverse con-
sistent registration of the T1-weighted images (Reuter et al., 2010; Reuter
and Fischl, 2011). Then, several processing steps (Dale et al., 1999; Fischl
and Dale, 2000), including skull removal, template transformation, and
atlas registration, were performed. Images were later segmented to white
matter, gray matter, and pia, based on intensity and neighborhood voxel
restrictions. The distance between the white matter and the pia was com-
puted as the thickness at each location of cortex.

To investigate our main hypothesis regarding the effect of the SNPs on
cortical thickness, we first identified the cortical regions connected by
white matter pathways and then we extracted their cortical thickness
using the workflow described in http://surfer.nmr.mgh.harvard.edu/
fswiki/VolumeRoiCortical Thickness.

Statistical analyses
SNP genotypes and cortical thickness. To assess the effect of the SNPs on
the cortical thickness of the corresponding regions, the cortical thickness
of the particular ROIs was analyzed using a mixed linear model in SPSS
version 21.0. The model was set for three repeated measures, and the
“unstructured” type was chosen for repeated covariance. The measures
of cortical thickness were entered separately as dependent variables, and
the SNP genotypes were set as a factor. Age, sex, and their interactions by
the SNPs, as well as handedness were entered as covariates. The main
effect of the SNPs on the thickness of the cortex was tested for each ROI
separately.

SNP genotypes and reading ability. The association of all three SNPs
with reading scores was assessed using a mixed linear model considering
three repeated measures of reading ability. The reading scores were en-
tered as dependent variables, and the SNP genotypes were set as a factor.
Age, sex, and handedness were considered as covariates. The main effect
of the SNPs on the reading ability was assessed for each SNP separately.
We later entered the SNP interaction by age and sex as covariates to assess
for interaction possibility in the model.

Brain structure and behavior measures. The white matter volume in the
SNP-associated regions as well as the thickness of the cortical areas were
set separately as covariates of interest in the mixed linear model and were
tested for a significant relationship to reading ability, including all three
repeated measures (sex and handedness were covariates). Next, we en-
tered age as a covariate to find the brain– behavior relationships after the
effect of covariates were removed.

In another set of analyses, we assessed which brain measures can pre-
dict future reading ability. Round 1 and 2 brain measures were set as
covariates, and they were analyzed to predict round 2 and 3 reading
scores using a mixed linear model considering two repeated measures
with sex and handedness as covariates. The model was then corrected for
the effect of either age or reading at baseline to see which relationship
would stay significant age independently.

Results
Genetic associations to white matter volume
In the assessment of the association of three dyslexia-related
SNPs, rs793842 (DCDC2), rs6935076 (KIAA0319), and rs3743204
(DYX1C1), on white matter volume now including all three
rounds of imaging of the longitudinal data, we found the same
significant association with white matter volume for these SNPs,
as already reported based on data from the first two time points
(Darki et al., 2012). Figure 1A shows the clusters found to be
significant for the association of each SNP. The clusters associ-
ated with these SNPs overlapped mainly with superior longitudi-

Figure 1. Main effect of three SNPs from the DYX1C1, DCDC2, and KIAA0319 genes on white matter structure. A, White matter clusters showing significant association between SNPs and white
matter volume in sagittal sections. B, Distribution of residuals of mean white matter volume in each significant region across different genotypes after correction for age, sex, and handedness. Error
bars indicate �1 SEM.
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nal fasciculus and the posterior part of corpus callosum based,
on the Johns Hopkins probabilistic atlas. The rs6935076 and
rs3743204 clusters were bilateral, while the significant region as-
sociated with rs793842 was located only in the left hemisphere.
The peak MNI coordinates, the size of the clusters, and the false
discovery rate (FDR)-corrected p values at cluster level are listed
in Table 1. All three significant regions (p � 8.19 � 10�5)
survived a more restricted significant threshold at multiple-
comparison correction [e.g., correction for 13 SNPs (Darki et al.,
2012), p � 0.0038] and were overlapped in left temporoparietal
area (Fig. 2A) in the same location found earlier (Darki et al.,
2012). Figure 1B illustrates the residual distribution of the mean
white matter volume in each significant region for the related
genotypes after correction for age, sex, and handedness.

Fiber tracking
An overlapping region of all three clusters was found in the left
temporoparietal area (Fig. 2A) and was used as the seed region for
fiber tracking. Using streamline fiber tracking, the tracts passed
through this ROI were traced on all individuals DTI space sepa-
rately, and then binarized and averaged across all subjects. Fiber
tracking on one subject as well as the group-averaged map of the
tracts across all individuals are shown in Figure 2, B and C, re-
spectively. Figure 2D shows the white matter pathways reached to
cortex after 10% thresholding. This was done to remove the un-
certain voxels with the probability of having fibers in �10% of
the subjects. The averaged map of white matter pathways was
then overlapped with the Harvard-Oxford cortical structural at-
las and subsequently labeled with different colors (Fig. 2E). We
found the white matter pathways; passed through the SNP-
associated region; and connected to the left MTG, SMG, and AG,
as well as to the bilateral LOC, superior parietal lobules, precu-
neus, and cingulate gyrus.

rs793842 (DCDC2) associated with cortical thickness
The main effects of the three SNPs on the thickness of cortical
areas were assessed for the left lateral regions identified by the
tract tracing (Fig. 2D) as well as their homologous areas in right
hemisphere. The only significant association was between
rs793842 (DCDC2) and the left lateral cortical region (F(2,83.99) �
9.39, p � 2.09 � 10�4, partial � 2 � 0.140). There was a trend for
this SNP also for the right hemisphere (p � 0.037), but it did
not survive the correction for multiple comparisons of six tests
(pcorrected � 0.008). Next, to anatomically localize the associated
regions in the left hemisphere, we tested the association of
rs793842 with the thickness of each of the five segmented cortical
areas (Fig. 2E). We found significant associations (Fig. 3A) be-
tween rs793842 (DCDC2) and the cortical thickness of left SMG
(F(2,86.96) � 5.05, p � 2.68 � 10�4, partial � 2 � 0.152), left AG
(F(2,88.78) � 5.12, p � 7.87 � 10�3, partial � 2 � 0.112), and left
LOC (F(2,84.21) � 11.96, p � 2.70 � 10�5, partial � 2 � 0.165).
The cortex was significantly thicker for T-allele carriers, who also

had lower white matter volume (Fig. 1B). There was also a signif-
icant interaction (Fig. 3B) between rs793842 and age on the
thickness of left SMG (F(2,114.78) � 7.61, p � 7.88 � 10�4) and left
LOC (F(2,110.38) � 7.77, p � 6.94 � 10�4). (The mixed linear
model used here did not provide the effect size or the partial �
squared. The partial � 2 values reported above are therefore the
effect sizes from the analyses performed on time point 1 only.)

Rs793842 (DCDC2) associated with reading ability
Rs793842 (DCDC2) was the only SNP that showed significant
association with reading comprehension scores (F(2,50.02) � 4.66,
p � 0.014) with lower reading scores for T-allele carriers who had
significantly lower white matter volume in the left temporopari-
etal area, and thicker cortex in the left SMG, AG, and LOC. The
SNP interaction by age was not significant. No genetic association
was found for a test of single-word reading, the word chain test
(p � 0.608).

Brain measures correlated with reading ability
The reading comprehension scores were positively correlated
with white matter volume in all three white matter regions (p �
5.00 � 10�5), also after correction for age (p � 0.001). Reading
comprehension scores were also associated with cortical thick-
ness in parietal regions, including left SMG (F(1,128.28) � 8.45, p �
4.32 � 10�3), right SMG (F(1,152.68) � 16.14, p � 9.2 � 10�5), left
AG (F(1,137.73) � 8.59, p � 3.95 � 10�3), right AG (F(1,144.97) �
21.72, p � 7.0 � 10�6), as well as the left and right LOC (F(1,111.81)

� 7.51, p � 7.15 � 10�3; and F(1,130.28) � 20.41, p � 1.4 � 10�5,
respectively). In contrast to the white matter associations, the
gray matter correlations did not remain significant when age was
included as a covariate.

The word chain scores were associated with the white matter
volumes (p � 10�6) as well as the cortical measures in all three
bilateral regions (p � 0.036 for MTG, p � 0.001 for SMG, p �
1.64 � 10�4 for AG, and p � 1.0 � 10�5 for LOC). The cortical
measures did not remain significant after entering age as a cova-
riate, but the relationships between white matter volumes and
word chain scores did remain significant (p � 0.010).

White matter volume predicted reading ability 2 years later
The white matter volumes in the SNP-associated regions were the
only brain measures that significantly predicted future reading
comprehension (p � 4.60 � 10�5) and word chain scores (p �
0.003). The volumes of white matter remained a significant pre-
dictor for reading comprehension 2 years later, even after cor-
recting for age (p � 0.001) or reading (p � 0.041) at baseline.

To quantify the amount of information gained from genetic
markers and brain measures compared with information gained
from knowing the baseline reading comprehension score in pre-
dicting future reading ability, we compared the following two
models: Model 1: Reading2 � �1 � age � �2 � sex � �3 �
handedness � �4 � Reading1, r 2 � 0.617 (r � 0.785); Model 2:
Reading2 � �1 � age � �2 � sex � �3 � handedness � �4 �
gene � �5 � white matter � �6 � cortical thickness, r 2 � 0.613
(r � 0.783). The results show that genetic information and brain
measures at baseline (r 2 � 0.613) are approximately as informa-
tive as knowing the baseline reading ability (r 2 � 0.617) in pre-
dicting future reading comprehension.

In another analysis, we aimed to assess how much of the vari-
ance in reading scores can be explained by the brain measures.
Using three different models, we showed that reading at baseline
explained 8.4% more variance than the model predicted by age,
sex, and handedness (r 2 � 0.533). Adding genetic and structural

Table 1. Coordinates for the effect of SNPs on white matter

SNP Gene

FDR-corrected
cluster-level p
value

Cluster
size

Peak voxel

z-score

MNI coordinates

x y z

rs3743204 DYX1C1 1.28 � 10 �10 9804 4.11 �16 �54 18
rs793842 DCDC2 8.19 � 10 �5 3353 4.24 �28 �70 33
rs6935076 KIAA0319 3.33 � 10 �10 8195 5.32 �34 �58 31

3.32 � 10 �10 8285 4.01 36 �28 37
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information explained another 5.9% of unique variance about
future reading comprehension.

White matter volume and cortical thickness
The white matter volume of left temporoparietal pathways
negatively correlated with the cortical thickness of left AG
( p � 0.004), SMG ( p � 0.048), and MTG ( p � 0.039) after
correcting for the effect of sex and handedness. We did not

correct for the effect of age to keep the developmental aspect of
brain maturation. In another analysis, we corrected for the
effect of age to see whether the link between white matter and
gray matter structures are age dependent. After correcting for
age, the correlation was not significant. The associations of
DCDC2 polymorphism with white matter volume and cortical
thickness were also significant after the effect of age was re-
moved. This suggests that the genetic associations are not de-

Figure 2. A, Overlap region between the significant white matter areas associated with the three dyslexia-related SNPs: rs3743204 (DYX1C1), rs793842 (DCDC2), and rs6935076 (KIAA0319). B,
Example of fiber tracking of one individual (red, green, and blue fibers show left–right, anterior–posterior, and inferior–superior directions, respectively). C, Probability map of traced fibers across
all individuals. D, The cortical regions most consistently connected are the middle temporal gyrus, supramarginal and angular gyri, as well as the lateral occipital cortex. The color bars correspond to
the number of subjects with available white matter pathways. E, Overlapped white matter pathways with Harvard-Oxford cortical structural atlas are labeled with different colors; red for left angular
gyrus, blue for left supramarginal gyrus, green for left middle temporal cortex, yellow for lateral occipital parietal cortex, and purple for superior parietal cortex.

Figure 3. A, Cortical thickness of left supramarginal and angular gyri across rs793842 (DCDC2) genotypes, after correction for age, sex, and handedness. All three time points are collapsed
together. B, rs793842 interaction by age for the residuals from the mean cortical thickness of left supramarginal gyrus across four different age groups after correction for sex and handedness. Error
bars indicate �1 SEM.
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pendent on the developmental relationship between brain
white and gray matter measures, and that they are related to
the interindividual differences.

Discussion
Here we expanded our previous analysis of the associations of
three dyslexia candidate genes with brain structural measures and
found that variation in DCDC2 (rs793842) affected the cortical
thickness in left SMG and AG. By including three rounds of the
longitudinal imaging data, we replicated our previous findings of
the effect of all three SNPs (rs3743204 of DYX1C1, rs793842 of
DCDC2, and rs6935076 of KIAA0319) on white matter volume in
left temporoparietal region (Darki et al., 2012). Both white and
gray matter structures were associated with reading ability.

The white matter pathways passing through the overlapping
area of the SNP-associated regions connected to the left SMG,
AG, posterior MTG, and the bilateral LOC. The parietal and tem-
poral cortical areas have been reported to be hypoactive in dys-
lexic subjects (Paulesu et al., 2001; McCandliss et al., 2003;
Richlan et al., 2011; Richlan, 2012). Moreover, these regions
showed volumetric differences in late literates relative to illiter-
ates (Carreiras et al., 2009). The role of these cortical regions in
language comprehension and semantic processing has also been
established in several functional neuroimaging studies (Chert-
kow et al., 1997; Binder et al., 2009; Turken and Dronkers, 2011;
Noonan et al., 2013).

Based on the temporoparietal white matter region, our fiber
tracking was restricted to temporoparietal pathways, and they did
not terminate at occipitotemporal cortical regions, which were
reported to be structurally different in dyslexic individuals com-
pared with normal control subjects (Kronbichler et al., 2008;
Altarelli et al., 2013). We found connections to the LOC with the
fibers extending from the posterior part of corpus callosum. LOC
has been previously associated with functional and structural ab-
normalities in dyslexia (Pernet et al., 2009; Danelli et al., 2013).
The white matter volume in the posterior part of the corpus
callosum and cingulum, with the connection to the parietal, oc-
cipital, and temporal lobes, has also been associated with the
other dyslexia candidate locus, MRPL19/C2ORF3 (Scerri et al.,
2012), suggesting that this locus is associated with visual percep-
tion and possibly general cognitive abilities such as recognition
and imagination (Danelli et al., 2013).

In the present study, the white matter volume in the SNP-
associated regions as well as the cortical thickness of the parietal
ROIs were significantly correlated with reading comprehension
and word chain scores. This is consistent with previously pub-
lished studies, which have assessed the associations between read-
ing and white and gray matter structures (Klingberg et al., 2000;
Nagy et al., 2004; Deutsch et al., 2005; Ben-Shachar et al., 2007;
Blackmon et al., 2010; Welcome et al., 2011; Vandermosten et al.,
2012; Wandell and Yeatman, 2013). Here, we also showed that
white matter volume in the left temporoparietal tract predicted
future reading ability. This emphasizes the role of white matter in
driving cognitive development in children, as was previously
shown for working memory (Darki and Klingberg, 2014; Ullman
et al., 2014).

rs793842 within the DCDC2 gene was also significantly asso-
ciated with reading ability, with lower reading scores for T-allele
carriers. We did not find this association in our previous study
(Darki et al., 2012) where we had two rounds of the longitudinal
data. T-allele carriers had significantly lower white matter vol-
ume in left temporoparietal area, and thicker cortex in left SMG,
AG, and LOC. Previously, the genetic markers of DCDC2,

KIAA0319, and DYX1C1 genes have been associated with varia-
tions in general reading ability (Luciano et al., 2007; Bates et al.,
2010; Lind et al., 2010). To our knowledge, rs793842 from
DCDC2 has not previously been associated with dyslexia, but it is
in linkage disequilibrium with previously associated markers.

The genomic distance between DCDC2 and KIAA0319 is only
�130 kb; however, this interval is relatively rich in recombina-
tions, and thus there is no linkage disequilibrium between the
markers for both genes (Schumacher et al., 2006). Thus, any
associations detected are likely to be specific for the gene impli-
cated and not reflect a genetic effect of the other gene. The
DCDC2 SNP rs793842, which showed association with cortical
thickness, happens to be highly informative, with a minor allele
frequency of 0.47, which may yield optimal power for detecting
associations, given that the functional haplotype covaries with
this marker. Because of the more limited power for the other
polymorphisms with lower frequencies, we cannot exclude the
effects that the other gene might have on cortical thickness.

All three dyslexia susceptibility genes studied in this article
have been associated with dyslexia (Paracchini et al., 2008; Couto
et al., 2010; Newbury et al., 2011; Scerri et al., 2011; Venkatesh et
al., 2013), neuronal migration (Wang et al., 2006; Gabel et al.,
2010; Peschansky et al., 2010; Szalkowski et al., 2012), and ciliary
function (Massinen et al., 2011; Chandrasekar et al., 2013) in
developing neocortex. Another study (Rosen et al., 2007) re-
ported neocortical and hippocampal malformations in Dyx1c1
knock-down rat brains. Similar to Dyx1c1 and Kiaa0319, the
knock-down expression of Dcdc2 in rats disturbed the migration
of neuronal precursors (Meng et al., 2005; Adler et al., 2013).
Furthermore, it has been shown that the expression of DCDC2
regulates the cilia length and signaling in primary rat hippocam-
pal neurons, suggesting that DCDC2 affects the structure and
function of primary cilia (Massinen et al., 2011). The essential
role of the other dyslexia candidate gene, DYX1C1, for cilia
growth and motility in zebrafish has also been reported (Chan-
drasekar et al., 2013). Interestingly, the proteins produced by
DYX1C1 and DCDC2 form protein–protein complexes in a neu-
roblastoma cell line, suggesting that they relate to interactions at
the cellular level, perhaps in cilia function (Tammimies et al.,
2013).

Besides the animal models, neuroimaging studies have tried to
find the link between genetic markers in dyslexia susceptibility
genes and structural and functional phenotypes in human brain.
Alteration in gray matter distribution has been related to a 2.4 kb
deletion within DCDC2 with higher gray matter volume in the
superior and middle temporal gyri, the occipitoparietal and in-
traparietal areas, and the inferior and middle frontal gyri for the
heterozygous healthy subjects (Meda et al., 2008). DCDC2 has
also been associated with brain activation during phonological
processing tasks in the superior anterior and posterior cingulate
gyrus, and the left inferior frontal gyrus (Pinel et al., 2012). These
studies suggest a wider cortical association with DCDC2, not only
a link to parietal and temporal cortex as in the present study.

While the white matter pathways studied here were corre-
lated with the thickness of the anatomically connected cortical
areas during development, they did not reveal any significant
correlation between each other after the effect of age was re-
moved. This suggests that DCDC2 has an independent effect
on white matter structure and cortical thickness, and that the
relationship between these brain measures has not driven the
genetic associations.

In summary, we attempted to find the link between dyslexia
genes, gray matter structure, and reading ability. Knowing the
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role of these genes (DCDC2, KIAA0319, and DYX1C1) in neuro-
nal migration and ciliary function as well as considering the as-
sociation of these genes with variations in general reading ability
(Luciano et al., 2007; Bates et al., 2010; Lind et al., 2010), we
assessed whether these genetically coded molecular and neuronal
mechanisms influence the brain changes, and subsequently be-
havior. The findings also suggest that neuroimaging can provide
intermediate phenotypes as a bridge between genetic markers
and behavior outcome.
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