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Abstract

Working memory capacity increases throughout childhood and adolescence, which is important for the development of a wide range of cogni
abilities, including complex reasoning. The spatial-span task, in which subjects retain information about the order and position of a number
objects, is a sensitive task to measure development of spatial working memory. This review considers results from previous neuroimaging stu
investigating the neural correlates of this development. Older children and adolescents, with higher capacity, have been found to have hi
brain activity in the intraparietal cortex and in the posterior part of the superior frontal sulcus, during the performance of working memory task
The structural maturation of white matter has been investigated by diffusion tensor magnetic resonance imaging (DTI). This has revealed se\
regions in the frontal lobes in which white matter maturation is correlated with the development of working memory. Among these is a superi
fronto-parietal white matter region, located close to the grey matter regions that are implicated in the development of working memory. Furthermc
the degree of white matter maturation is positively correlated with the degree of cortical activation in the frontal and parietal regions. $tsis sugge
that during childhood and adolescence, there is development of networks related to specific cognitive functions, such as visuo-spatial wor}
memory. These networks not only consist of cortical areas but also the white matter tracts connecting them. For visuo-spatial working memq
this network could consist of the superior frontal and intraparietal cortex.
© 2005 Elsevier Ltd. All rights reserved.
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1. Development of visuo-spatial working memory screen and then recalled by indicating the positions in the correct
order Westerberg, Hirvikoski, Forssberg, & Klingberg, 2004
Working memory capacity develops throughout childhoodThe development is well described as a linear increase that con-
and early adulthood. This can be measured by the increase fimues to at least 16 years of age.
the amount of information that can be retained in various types Working memory processes can be divided into two cate-
of working memory tasks, such as the span-board task whegories, one being passive storage and the other being a more
the subject retains information about the order and positiomctive process related to “executive contr@afideley & Hitch,
of a number of objectsGathercole, Pickering, Ambridge, & 1974, or “controlled attention” Engle, Kane, & Tuholski,
Wearing, 20034 Although differences in strategy contribute to 1999. Tasks requiring more controlled attention are more highly
the improved performance in early childhoodofvan et al., correlated with reasoning ability and intelligencEofiway,
1994, the increase in capacity from about 6 years of age seentsane, & Engle, 2008 The demand for controlled attention can
to be linear Fry & Hale, 2000 Gathercole et al., 2004and  beincreased in many ways, for example by requiring the subjects
has been described as a quantitative change in capacity, rathtermanipulate the stored information, by introducing a dual-task
than a change in strateg¥ry & Hale, 2000. Fig. 1 shows requirement Conway et al., 2003; Engle et al., 199%r by
the improved performance on a version of the span-board taskjcluding distractions or interferenc&(ay, Chabris, & Braver,
where cues are serially presented in:a4 grid on a computer 2003.
At a superficial level, the forward spatial-span task does
not seem to require any manipulation of the retained infor-
* Tel.: +46 8 5177 7355; fax: +46 8 5177 7349. mation, nor any dual-task requirements. Yet, the correlation to
E-mail address: torkel.klingberg@Kki.se. performance on complex reasoning tasks such as the Raven’s
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Fig. 1. (a) The visuo-spatial working memory task. Cues are presented one at a time ih@gridl and the subject then responds by indicating the correct positions
in the correct order on the screen. The testing starts with only two cues, and the number of items are then gradually increased. The subject itagivets two a
on each level and the testing is terminated when the subject fails on both attempts at a specific level. The total score is calculated as the tdtebrrestlyer o
remembered cues. (b) Correlation between age and performance on the visuo-spatial working memory tigéstiedoerg et al., 2004

Progressive matrices is higlfry & Hale, 1996, and in our  11.9, 14 boys). Children were scanned while performing a visuo-
own data this correlation is=0.45 in 8-12-year-old children spatial working memory task and a baseline task. The working
(Klingberg et al., 200pb This is comparable to the 0.32 correla- memory task was similar to that describedHig. 1, except
tion between performance of the Raven’s tasks and performandkat the response was made by indicating whether a probe was
of working memory dual-tasks such as reading span and opelecated in the same position as any of the remembered cues
ation spanfEngle et al., 1999 It is likely that other factors, in  (a yes/no response). In order to avoid differences in accuracy
addition to manipulation and dual-task requirements, demanbetween older and younger subjects we only required subjects
controlled attention in a working memory task. Active rehearsato remember a small number of cues (three or five) in order to
of the spatial sequence might be one such factor. In pure pasachieve ceiling effects. Outside the scanner, a spatial-span task
sive storage of visuo-spatial information, the capacity limit is(Fig. 1) and a different testing procedure was used to measure
about four itemsCowan, 2001 In span tasks the limit is typ- the maximum capacity of each participant.
ically seven to eight items, which is presumably due to the A subtraction of brain activity recorded during the control
active rehearsal of the information. The serial presentation anthsk from that recorded during the working memory task resulted
response in the spatial-span task also introduces interference aimda measurement of working memory related activity. We then
a dual-task requirement because of the interfering effect of latezxplored where in the brain the score on the spatial-span task
cues on the memory of earlier cues. During the response oreorrelated with activity. Brain activity in the posterior part of
has to respond to early cues while simultaneously rememberiniipe superior frontal sulcus{26, 8, 56) and intra- and inferior
later cues, which is very similar to the dual-task requiremenparietal cortex {36, —50, 56) correlated positively with span.
of the listening span task or the computational span task. Th&he first study included 14 childreiKijngberg et al., 2002a
spatial-span task is thus a working memory task requiring activgVhen the number of participants was increased to 23, we also
rehearsal and controlled attention, and performance is correlatédund a significant, positive correlation in the head of the caudate
to complex reasoning abilities. The capacity measured with thiaucleus in the left hemispher®lgsen et al., 2003The results
task develops throughout childhood and early adulthood, andre consistent with a previous study of working memory perfor-
task performance is also a sensitive measure of the cognitiv@ance in children and adults, which found both dorsal frontal
deficits in attention deficit hyperactivity disordéddrtinussen, and parietal activations in both groups, and concluded that the
Hayden, Hogg-Johnson, & Tannock, 2008esterberg et al., areas activated were similaN¢lson et al., 2000; Thomas et
2009. What then, are the neural correlates of the developmerdl., 1999. The results were also confirmed in a later develop-
of the spatial-span task? mental study of visuo-spatial working memotgvjon, Reiss,

& Menon, 2002.

2. Development of working memory and changes in
brain activity 3. Development of white matter

Non-invasive methods such as functional MRI (fMRI), have  There are several structural maturational processes that coin-
opened the possibilities to image brain activity in children. Incide in time with the increase in working memory capac-
two previous studies, using overlapping samples of subjectsty, most importantly the myelination of axon¥gkovlev &
fMRI was used to measure changes in brain activity associateldecours, 196Yand synaptic remodelling, including strengthen-
with the development of spatial-span performarn€kngberg, ing of connections and pruning. Myelination continues at least
Forssherg, & Westerberg, 20Q2@lesen, Nagy, Westerberg, until 20 years of age and can be measured from T1-weighted
& Klingberg, 2003. The first study Klingberg et al., 2002a MR images as an increase in white matter volui@aviness,
included 13 children (age 9-18, mean age 13.4, 9 boys). ThiKennedy, Richelme, Rademacher, & Filipek, 19D@ Bellis et
sample was later extended to 23 children (age 8-18, mean agé, 2001; Giedd et al., 1999; Paus et al., 1999; Pfefferbaum et al.,



+ Model

T. Klingberg / Neuropsychologia xxx (2006) xxx—xxx 3

1994 Reiss, Abrams, Singer, Ross, & Denckla, 1986well,  might also provide insight into the possible mechanisms under-
Thompson, Holmes, Jernigan, & Toga, 199Bhe microstruc-  lying developmental dyslexia.
tural properties of white matter can be investigated in vivo by In the study byNagy et al. (2004PDTI was used to estimate
diffusion tensor MR imaging (DTI). This technique is based ondiffusion in white matter in 23 children between 8 and 18 years
the fact that the diffusion of water in the white matter of the of age (mean age 11.9, S.D. 3.1, 14 boys) and then calculated
brain is anisotropicNloseley et al., 1990 so that it is faster fractional anisotropy was used as an indicator of white matter
along the axons than perpendicular to them. The axonal menmaturation, including myelination and thickening of axons. Inan
brane itself induces some of this directional preference eveaxploratory analysis, we searched the brain for voxel in which
without myelin Gulani, Webb, Duncan, & Lauterbur, 2001 fractional anisotropy values correlated with working memory
Wimberger et al., 1995 However, myelination of the axons and reading scores acresoss individuals. We found that devel-
further increases the anisotropy, as shown in studies comparirgpment of working memory capacity was positively correlated
anisotropy with histological findingdNimberger et al., 1995  with fractional anisotropy in two regions in the left frontal lobe,
comparing anisotropy in normal mice with that of knock-outincluding a region between the superior frontal and parietal cor-
mice lacking myelin Gulani et al., 200}, as well as in human tices (Nagy et al., 2004; Olesen et al., 2Q0Reading ability, on
studies of demyelination/Nerring, Clark, Barker, Thomson, & the other hand, was only significantly correlated with fractional
Miller, 1999). The degree of anisotropy can be quantified asanisotropy in the left temporal lobe, in the same white mat-
fractional anisotropy (FA), which ranges from 0, correspondinger region in which adults with reading disability are known to
to free diffusion, to 1, which is the hypothetical case of diffusionhave lower fractional anisotropKlingberg et al., 200D Later
along a single line. Although FA can be affected by microstrucstudies have also confirmed the positive correlation between
tural properties, such as how densely the axons are packed, aftdctional anisotropy and reading ability in this white matter
how regular their arrangement, these factors do not increase witlegion Beaulieu et al., 2005
age in a normal sample of children. Increase in FA during child- The fact that white matter develops until late in childhood
hood and adolescence can therefore be attributed to myelinatidvas been shown in previous studi€ayiness et al., 1996; De
and thickening of axons. Bellis et al., 2001; Giedd et al., 1999; Klingberg et al., 1999;
DTI has been used in order to map the maturation of whiteMukherjee et al., 2001; Paus et al., 1999; Pfefferbaum et al.,
matter during childhoodMukherjee et al., 20Q1Klingberg, 1994; Reiss et al., 1996; Schmithorst et al., 2002; Sowell et al.,
Vaidya, Gabrieli, Moseley, & Hedehus, 1999chmithorst, 1999. Our results extend these previous findings by showing
Wilke, Dardzinski, & Holland, 2002 Snook, Paulson, Roy, the regional and functional specificity of this maturation—with
Phillips, & Beaulieu, 200 However, these studies could not maturation of relatively restricted regions that is correlated with
make any direct connection between structural maturation anspecific cognitive functions.
behavioral performance. In the study Kggy, Westerberg, and Itistempting to interpret the changes in fronto-parietal myeli-
Klingberg (2004 this was accomplished by measuring two dif- nation seen irNagy et al. (2004)as structural changes that
ferent cognitive functions: visuo-spatial working memory andcould cause the changes in brain activity in the frontal and pari-
reading ability, and then correlating the increase in performancetal regions demonstrated earlier Kiingberg et al. (2002a)
over age with fractional anisotropy in the brain. By using twolf this is so, one would expect fractional anisotropy and BOLD
different cognitive functions we were able to demonstrate somsignal in these regions to be correlated. This was investigated
specificity of maturation, e.g. that maturation of a white matterby Olesen et al. (2003)The subjects and the DTI data in the
region is more associated with development of one function andtudy byOlesen et al. (2003)ere identical to those reported
less with another. We hypothesized that we would find maturaby Nagy et al. (2004)We included the fMRI measurements
tional changes in white matter close to the frontal and parietalrom the study byKlingberg et al. (2002aplus fMRI measure-
regions associated with visual-spatial working memory, or irments from 10 additional subjects. White matter regions that
the white matter connecting them. showed a developmental trend were identified by using working
Development of reading ability is associated with changes irmemory scores from the children as a covariate, and selecting
cortical activity in temporo-parietal, temporo-occipital, and ven-white matter regions in which there was a positive correlation
tral frontal regions $haywitz et al., 2002Turkeltaub, Gareau, between working memory scores and FA. In the second step, we
Flowers, Zeffiro, & Eden, 2003 In a previous DTI study, it extracted the FA values from these regions for each individual.
was found that reading ability, as measured by the word-ID tasKhese values were then used as covariates in an exploratory anal-
from the Woodcock test battery, was correlated with white matysis of BOLD activity. Corresponding analyses were also done
ter integrity in the left temporo-parietal regiokl{ngberg et  starting with BOLD response values in grey matter regions that
al., 2000Q. In this region, adult subjects with reading disabil- were correlated with FA values. This second analysis (BOLD
ity had impaired integrity of white matter compared to con-to FA) was primarily performed in order to confirm findings
trols. Furthermore, both within the reading impaired group androm the first analysis. A general positive correlation between all
within the control group there was a positive correlation betweemeasures (age, working memory, FA, BOLD) is to be expected
reading ability and white matter structure. Given these resultsjuring development. The question was whether we could detect
we hypothesized that development of reading ability might beany sign of regional specificity in these data, with some regions
dependent on white matter structure in the temporo-parietadhowing stronger correlations depending on the functional net-
region. If such a developmental trend could be detected, thigorks in which they participate.
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the delay-period, when information is held in working memory
(Cohenetal.,199Tourtney, Ungerleider, Keil, & Haxby, 1997
Curtis et al., 2004; Pessoa et al., 2002; Rowe et al., R00&
sustained activity thus resembles the sustained activity observed
during delay periods in electrophysiological studies of working
memory in macagued-@nahashi, Bruce, & Goldman-Rakic,
1989 Fuster & Alexander, 1971

Several tasks involving ‘top-down’, or ‘voluntary control’ of
attention have found activation at an almost identical superior
frontal site as in visuo-spatial working memory taske(betta
et al., 1998 Hopfinger, Buonocore, & Mangun, 200Rastner,
Pinsk, De Weerd, Desimone, & Ungerleider, 19 these
tasks, the subject is cued about the location of a future target, or
searches for a particular known target. The subject thus needs
to keep a representation of the target, or its location, in working
Fig. 2. Summary of the superior frontal-intraparietal network involved in thememory, in a similar way to that in which information is kept
development of visuo-spatial working memory (frédtingberg et al., 2002a,b;  on-line during working memory tasks. Top-down attention and

Nagy etal., 2004; Olesen et al., 2Q0Regions showing a correlation between o ying memory could thus be overlapping concepts, with over-
brain activity and the development of capacity are shown in red. Regions showin

a correlation between white matter maturation and development are shown Eﬁlps in the underlying brain activity, as has also been suggested

white. The regions that showed a significant correlation in the analysis of BoLCPreviously Corbetta & Shulman, 200Desimone & Duncan,
response vectors on FA maps, are shown with thin lines. Thick lines indicatd 995 Kastner & Ungerleider, 2000 Interestingly, a positive

regions that showed a significant correlation when FA was used as covariates gprrelation between activity in the superior frontal sulcus and

the BOLD analysis. developmental improvement in performance was also found in
a study using the Stroop taskqleman et al., 2002 This task is

It was found that FA values in fronto-parietal white matter not generally thought of as requiring working memory, and the

were positively correlated with the BOLD response in closelyfunction here is presumably related to the demand for top-down
located grey matter in the superior frontal sulcus £26,y=6,  control of attention.

z=56) and intraparietal cortex £ —34,y=—-68,z=52), areas

that could form a functional network underlying working mem- 5. Function of the parietal cortex and fronto-parietal

ory function Fig. 2) (Olesen et al., 20Q3The correlation of FA  petworks

values in fronto-parietal white matter with the BOLD responsein

the superior frontal sulcus was confirmed in the converse analy- The inferior and intraparietal cortex shares many functional

sis, where BOLD response values were used as covariates on lfyaracteristics with the superior frontal cortex: it is active dur-

maps. This correlationis primarily explained by age-related mating visuo-spatial working memory task8gurtney et al., 1998;

uration of white and grey matter since working memory scorejonides et al., 1993; Postle and D’Esposito, 1999; Rowe et al.,

did not correlate with FA values or the BOLD response in thes&000; Smith et al., 1995; Sweeney et al., 1986d shows sus-

regions when age-related variance was removed. tained activity during the delays in the working memory tasks
Taken together, these studiédigberg et al., 2002a; Nagy (Cohen et al., 1997; Rowe et al., 200The intraparietal cor-

etal., 2004; Olesen et al., 2003; Westerberg et al., PB8¥e  tex is also active in tasks demanding voluntary control of visual

identified a superior frontal-intraparietal network where braingttention Corbetta, Kincade, Ollinger, McAvoy, & Shulman,

activity, myelination and development of visuo-spatial working 200q Hopfinger et al., 2000; Kastner et al., 19¢®d has sus-

memory capacity are related during childhood and early adulttained activity during the cue period in such tasksibetta et

hood. al., 2000; Hopfinger et al., 2000; Kastner et al., 1)99%hough
the functional parcellation of the intra- and inferior parietal cor-
4. The superior frontal region tex is unclear at this point, this intra/inferior parietal region can

be separated from an area at the temporo-parietal junction (about

The cortex in the posterior part of the superior frontal sul-15 mm above the AC—PC line) which is notinvolved in top-down
cus (possibly Brodman area 8) is consistently activated duringontrol but is involved in orientingGorbetta & Shulman, 2002
performance of visuo-spatial working memory taske(irtney,  Corbetta et al., 200@ownar, Crawley, Mikulis, & Davis, 2000
Petit, Maisog, Ungerleider, & Haxby, 199&€urtis, Rao, & and arousalGoull, Nobre, & Frith, 2001
D’Esposito, 2004 Jonides et al., 1993Pessoa, Gutierrez, The activity in the frontal and parietal regions is higher during
Bandettini, & Ungerleider, 20Q2Postle & D’Esposito, 1999  correct trials than incorrect trial$éssoa et al., 20p2Several
Rowe, Toni, Josephs, Frackowiak, & Passingham, 2808ith  recent studies have also shown a correlation between inter-
et al., 1995; Sweeney et al., 1996lowever, activation of this individual differences in working memory capacity and activ-
region is also evident in non-spatial working memory tasksty in the intraparietal cortexTodd & Marois, 2004 Vogel &
(Cohen et al., 1997; Klingberg, 199®0stle & D’Esposito, Machizawa, 200} which is in line with the correlation between
1999. Furthermore, this area exhibits sustained activity duringparietal activity and capacity found in the developmental studies.
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The intraparietal and superior frontal areas seem to constitutment might rely on a genetically programmed maturation of
a functional unit, and the functionality of this unit is dependentfronto-parietal connections, while training results in strengthen-
on the connections between them. Electrophysiological dateng of local excitatory connections. Both processes could result
suggest that the character of the neuronal activity in the parietah improved working memory capacity and higher BOLD activ-
areai.p. and frontal area 8a is very simil@h@fee & Goldman- ity in the intraparietal cortex. In order to resolve these questions
Rakic, 1998. However, it is also possible that there are slightwe need a deeper understanding of the relationships between cel-
differences in the computations done by the frontal and parietdular mechanisms, the BOLD signal and information processing
regions. It could, for example, be that the parietal region store# the brain.
the spatial representation of the sensory cues, and that the role
of the frontal region is to maintain this representation by activity
similar to that associated with covert eye moveme@tauftney  References
etal., 1998Curtis & D’Esposito, 2003 Itis also likely that this
network needs to be extended with additional prefrontal regiongdleman, N. E., Menon, V., Blasey, C. M., White, C. D., Warsofsky, I. S.,
in some circumstances, such as when distracters are present dur-G'over. G. H., et al. (2002). A developmental fMRI study of the stroop

. . . . color-word task.Neuroimage, 16, 61-75.
ing the trial Gakai, Rowe, & Passingham, 2002 Baddeley, A. D., & Hitch, G. J. (1974). Working memory. In G. A. Bower

(Ed.), The psychology of learning and motivation: Advances in research

6. The influence of experience on working memory and theory (pp. 47-90). New York: Academic Press.

capacity and brain activity Beaulieu, C., Plewes, C., Paulson, L. A., Roy, D., Snook, L., Concha, L.,
et al. (2005). Imaging brain connectivity in children with diverse reading

. . . . ability. Neuroimage, 25, 1266-1271.
One way of interpreting the maturation of the frontO_pa”etaICaviness, V. S., Kennedy, D. N., Richelme, C., Rademacher, J., & Filipek,

network, isto assume a genetically pmg_ra.-mmed maturation of p A (1996). The human brain age 7-11 years: A volumetric analysis
white matter which affects the neural activity in the frontal and  based on magnetic resonance imagasebral Cortex, 6, 726-736.

parietal regions, and in turn determines the capacity and thehafee, M. V., & Goldman-Rakic, P. S. (1998). Matching patterns of activity
BOLD response. However it is important to keep in mind the in primate prefrontal area 8a and parietal area 7ip neurons during a spatial

. . . . working memory taskJ [ of Ne hysiology, 79, 2919-2940.
correlational nature of the studies, and the possible direct effegt o 3 5. ponctem v M (gra\fg”’}ygo (|)\1g;strom E Mol D. C

of experience on neural activity and capacity. Jonides, J., et al. (1997). Temporal dynamics of brain activation during a

Except for the changes in capacity that occur during devel- working memory taskNature, 386, 604—-608.
opment and aging, it has previously generally been assumeepnway, A. R., Kane, M. J., & Engle, R. W. (2003). Working memory capac-
that Working memory Capacity is a fixed trait. Recent studies, gy::;j |5t§2relat|0n to general intelligenc@ends in Cognitive Sciences,
however, hz_ivg suggested that practice of working memory_tas@orbetta’ M., Akbudak, E., Conturo, T. E., Snyder, A. Z., Ollinger, J. M.,
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) g9 9 " )5 ! 9 . > Corbetta, M., Kincade, J. M., Ollinger, J. M., McAvoy, M. P., & Shulman,
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oI daily practice increase e wo g memory related ac Courtney, S. M., Petit, L., Maisog, J. M., Ungerleider, L. G., & Haxby, J. V.
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