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Abstract Persistent neural activity constitutes one
neuronal correlate of working memory, the ability to
hold and manipulate information across time, a pre-
requisite for cognition. Yet, the underlying neuronal
mechanisms are still elusive. Here, we design a visuo-
spatial delayed-response task to identify the relationship
between the cue-distractor spatial distance and mne-
monic accuracy. Using a shared experimental and com-
putational test protocol, we probe human subjects in
computer experiments, and subsequently we evaluate
different neural mechanisms underlying persistent activ-
ity using an in silico prefrontal network model. Five
modes of action of the network were tested: weak or
strong synaptic interactions, wide synaptic arborization,
cellular bistability and reduced synaptic NMDA com-
ponent. The five neural mechanisms and the human
behavioral data, all exhibited a significant deteriora-
tion of the mnemonic accuracy with decreased spatial
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distance between the distractor and the cue. A subse-
quent computational analysis revealed that the firing
rate and not the neural mechanism per se, accounted
for the positive correlation between mnemonic accuracy
and spatial distance. Moreover, the computational mod-
eling predicts an inverse correlation between accuracy
and distractibility. In conclusion, any pharmacological
modulation, pathological condition or memory training
paradigm targeting the underlying neural circuitry and
altering the net population firing rate during the delay
is predicted to determine the amount of influence of a
visual distraction.

1 Introduction

Working memory (WM), the capacity to hold and manip-
ulate information during a brief period of time, is central
for cognitive performance including language, problem
solving and it also constitutes a basis for guiding future
actions (Norman 1970; Baddeley 1986). The transient
storage governed by WM is an active and dynamic pro-
cess, where persistent and stimulus selective elevated
neural activity has been identified as one neural corre-
late for visuo-spatial WM (Goldman-Rakic 1995; Wang
2001). Posterior parietal, inferotemporal and prefrontal
cortical areas are closely associated with WM, as demon-
strated by lesion, brain imaging and electrophysiological
studies (Goldman-Rakic 1987, 1995; Fuster 1995). If the
persistent activity is disrupted by electrical stimulation
or by distracting stimuli during the delay period, the
cue-related information in memory is lost (Funahashi
et al. 1989; Fuster 1997). Consequently, neural control
of the sustained delay activity and robustness against
distractors is crucial for an intact cognitive apparatus.
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Yet, the underlying neuronal mechanisms which govern
the sustained activity and control the sensitivity against
distractors have not yet been identified. Computational
modeling of cortical circuits is an important research
tool which facilitates an identification of the contribu-
tion from different synaptic and cellular factors (Wang
2001). Here, we use a biophysical network model oper-
ating in different modes to produce persistent activity
where our objective is to evaluate different cellular and
synaptic mechanisms which have been suggested to gen-
erate persistent neuronal activity in connection with a
visuo-spatial WM tasks. We used spatially distracting
stimuli to investigate both the different regimes of the
network model and behavioral experiments performed
on human subjects. Specifically, we investigated the rela-
tionship between spatial distance to distractors and mne-
monic accuracy in a visuo-spatial delayed-response task.
Our integrated experimental and computational distrac-
tor design enables us to correlate the spatial sensitivity
between distractors and mnemonic accuracy for differ-
ent neural mechanisms with human behavior.

For cortical networks in general, several broad clas-
ses of neural mechanisms have been discussed. First,
synfire chains—chains of neuronal subgroups feedfor-
ward connected—that permit a wave of synchronous
activity to be maintained through closed loops (Abeles
1991; Diesmann et al. 1999; Gewaltig et al. 2001); syn-
chronous oscillations as a basis for cortical dynamics
subserving perception, memory and cognition (Singer
1993); networks operating with fast Hebbian plastic-
ity (Brunel 1996; Sandberg et al. 2003). However, the
most accepted and biologically plausible mechanistic
framework in the field of visuo-spatial or object working
memory is a recurrent network model in which the per-
sistent activity is represented as self-sustained dynami-
cally stable states through reverberatory neural activity
(Amari 1977; Hopfield 1982; Amit 1995). This mecha-
nism was first investigated in the 1930s by Lorente de
Nó and Hebb (1949) and refers to the flow of neural
activity due to the early observation that cerebral cor-
tex has an abundance of recurrent synaptic connections
between neurons. Several studies concerning the neu-
ral mechanisms underlying WM activity have been per-
formed using different neuronal and synaptic instances
of this basic recurrent neural network idea originat-
ing from the work of Lorente de Nó and Hebb (Seung
1996; Amit and Brunel 1997; Fransen and Lansner 1998;
Compte et al. 2000; Seung et al. 2000; Tegnér et al. 2002;
Egorov et al. 2002; Koulakov et al. 2002; Goldman et al.
2003; Loewenstein and Sompolinsky 2003; Wang et al.
2004). These computational studies have revealed that
even though the mechanistic framework based on the
reverberatory idea appears straightforward, there are

several non-trivial issues such as what controls the fir-
ing rate and the stability of the neural activity during
the delay-period. Thus, the major reason why there are
several different versions of the original reverberatory
circuit is that those issues depend on the particular
nature of the neuronal and synaptic mechanisms gov-
erning the persistent activity. Our strategy here is to
evaluate the major modes of operations by investigat-
ing the consequences of a distractor in the different neu-
ral modes of action for the network. The advantage is
that the outcome of those in silico experiments can be
directly evaluated using the human behavioral experi-
ments we have performed in the present study.

Due to the inherent stability problems with the recur-
rent model several modifications have been suggested
such as an increased synaptic NMDA component and
stronger or wider excitatory synaptic connections (Amit
and Brunel 1997; Compte et al. 2000; Tegnér et al. 2002).
Additionally, as it recently gained more experimental
support (Egorov et al. 2002), cellular bistability has been
suggested to stabilize the persistent activity (Koulakov
et al. 2002). A bistable mode of action allows neurons
to jump between two stable activity states with low and
high firing rates. Goldman et al. (2003) reduced the large
jumps in firing rates commonly associated with bistabil-
ity by incorporating multiple dendritic subunits. As a
consequence, the firing rate of a neuron increases only
incrementally as single dendritic compartments switch
state. To evaluate these different mechanistic proposals,
we first implemented the biophysical network model
in a reference mode (A) from which we can modify
the model parameters to enable the following different
modes of action: strong recurrent excitatory synaptic
connections, referred to as (B) high E-E mode; wider
excitatory connections, referred to as (C) wide profile
mode; a bistable mode of action, referred to as (D) bista-
ble mode; and finally a low NMDA synaptic component,
referred to as (E) low NMDA mode.

2 Methods

2.1 Behavioral distractor trial

A visuo-spatial WM task using visual distractors dur-
ing the delay period was performed by 31 participants
(14 men and 17 women, average age 25.8 ± 4.6). They
were asked to remember the spatial position of five
blue circles (cues) which appeared one at a time on a
28.5 × 21.5 cm computer monitor, 50 cm distance from
the participant’s eyes. The cues and distractors could
appear at 16 possible locations on the perimeter of a
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Fig. 1 Schematic diagram showing an example of the delayed-
response task. The participants fixed their gaze on a central spot
during the entire task. After a fixation screen of 500 ms five cues
(circles) and one distractor (square) were presented at different
locations on the peripheral circle with 150 ms presentation time
and 750 ms inter-cue delay. Distractors followed the third or the
fourth cue at five distances, 22.5◦, 45◦, 67.5◦, 90◦ and 180◦. After
the cue presentation the participants indicated in an orderly man-
ner the location of each cue with the computer mouse

circle of 20.0 cm diameter which was visible during the
entire task (Fig. 1).

The participants initiated the trial fixating a point for
500 ms in the center of the screen and were asked to
maintain fixation during the entire trial. The fixation
period was followed by a succession of five cues (blue
circles) and one intervening distractor (blue square),
with 150 ms presentation time and 750 ms delay between
the cues. The last cue was followed by a delay period
of 750 ms after which the cursor of a computer mouse
appeared and the participants had to respond by clicking
on the remembered cue locations.

In every trial either the third or the fourth cue was
followed by a distractor that was to be ignored. The
distractor could be presented at five spatial distances
relative to the memorized cue, 22.5◦, 45◦, 67.5◦, 90◦ and
180◦ angles with the vertex on the fixation point. Thus,
360◦ represented the whole span of the visual field. The
shorter the distance the higher was the expected inter-
ference of the distractor with the memory of the cue.
A total of 40 trials were performed in random order by
every participant.

The distractor effect was evaluated by means of accu-
racy, defined as the spatial distance (measured in
degrees) from the presented cue to the location indi-
cated by the participant at the end of the trial (∼4 s after
cue onset).

The participants responded by clicking on the screen
(continuous range of locations) for all five memorized
cues in the order of appearance. If the distance from the
cue location to the location pointed out by the partici-
pant (accuracy) exceeded a predefined threshold of 20◦
the cue location was considered forgotten and the trial

was discarded. Only the accuracy of the cue followed by
distractor and its corresponding control (no distraction)
were taken into consideration.

The significance of the behavioral results was assessed
using one-way repeated-measure ANOVA and two-
sided paired t-test.

2.2 Recurrent network model

The neural network model used for the simulations was
previously studied by Tegnér et al. (2002) and represents
a local cortical circuit capable of upholding states of per-
sistent neuronal activity accounting for the memory stor-
age in WM (Amit and Brunel 1997; Wang 1999; Compte
et al. 2000; Tegnér et al. 2002). The model included 2 neu-
ronal populations, 512 excitatory (E) and 128 inhibitory
(I) cells (Fig. 2a). The neurons were spatially distributed
in a ring in accordance with the preferred visual angle
of the stimulus location. Thus, the neurons responded
selectively to visual stimuli depending on their spatial
location in the visual field (Ben-Yishai et al. 1995),
resembling previous oculomotor delayed-response task
experiments (Funahashi et al. 1989; Goldman-Rakic
1995). The neurons were parameterized by the angle
θ (0◦–360◦) that specified their preferred visual angle.
Figure 2b shows a schematic diagram of the connectivity
structure. The architecture of the model and its recurrent
connectivity resembles the columnar organization of the
prefrontal cortex (Levitt et al. 1993; Goldman-Rakic
1995; Kritzer and Goldman-Rakic 1995; Mountcastle
1997). The neuron models used followed the Hodg-
kin–Huxley formalism with action potential profile and
neuronal input–output relation calibrated using cortical-
slice data (McCormick et al. 1985; Markram et al. 1997)
and the postsynaptic current gating kinetics of AMPA,
NMDA (Hestrin et al. 1990; Jahr and Stevens 1990;
Spruston et al. 1995) and GABAA receptors (Amari
1977; Salin and Prince 1996; Xiang et al. 2002).

Excitatory neurons were of pyramidal type with three
compartments, representing soma, proximal and distal
dendrites. The somatic compartment contains INa and
IK currents, a high-threshold calcium current ICa, and
a slow calcium-dependent cationic current ICAN. The
proximal dendritic compartment has a persistent sodium
current INaP and a slowly inactivating potassium current
IKS. The distal dendritic compartment has an ICa and a
transient A-type potassium current IA. Additionally, all
neuronal compartments included a leak current IL. The
membrane equations for the somatic voltage Vs, prox-
imal dendritic voltage Vd1, and distal dendritic voltage
Vd2 were
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Fig. 2 Schematic representation of the model connectivity. a Two
populations of neurons 512 excitatory (E) and 128 Inhibitory (I)
cells with all-to-all connections both within and between the pop-
ulations. b The strength of the recurrent connections between
excitatory cells depended on their proximity, represented by the
angle between them. Inhibitory projections, which extend to all
cells, are evenly distributed across the pyramidal and inhibitory
units of the network. See text for more details

CmdVs

dt
= −INa − IK − ICa − IL − ICAN

−gc1(Vs − Vd1)

p1 − Isyn

CmdVd1

dt
= −INaP − IKS − IL − gc1(Vd1 − Vs)

p2

−gc2(Vd1 − Vd2)

p2 − Isyn

CmdVd2

dt
= −IA − ICa − IL − gc2(Vd2 − Vd1)

(1 − p1 − p2) − Isyn
.

The inhibitory neurons were of fast-spiking type and
were represented by one compartment containing only
spike generating sodium and potassium currents. The
membrane equation was

CmdV
dt

= −INa − IK − ICa − IL.

Synaptic currents were modeled according to Isyn =
gsyns(V − Esyn), where gsyn represents the maximal syn-

aptic conductance, Esyn the synaptic reversal potential
and s is the gating variable which decides the fraction of
open synaptic ion channels. A complete description of
neuron models, with details of ion channel kinetics and
conductance parameters, can be found in (Tegnér et al.
2002).

The synaptic connection strength between excitatory
E neurons decreases with the angle between the pre-
ferred cues of two neurons following a smooth Gauss-
ian connectivity drop-off. The connectivity W between
neuron i and j is described by (Compte et al. 2000)

W(θi − θj) = J+ + (J− − J+)e−(θi−θj)
2/2σ 2

.

W(θi − θj) is the normalized connectivity. The
J− parameter represents the strength of the weak distant
connections, J+ the strength of the stronger adjacent
connections and σ the footprint of the connectivity. The
excitatory connection strength from E to I as well as
all inhibitory connection from I neurons is indepen-
dent on the inter-neuronal distance and is evenly dis-
tributed across the E and I units of the network. The
recurrent excitatory synaptic conductances of the model
were mediated by NMDA and AMPA receptor chan-
nels. Previous theoretical studies (Amari 1977; Lisman
et al. 1998; Wang 1999; Compte et al. 2000; Tegnér et al.
2002) revealed that a dominant slow excitation medi-
ated by NMDA receptors stabilizes the firing rate of the
pyramidal neurons generating the sustained activity.

2.2.1 Reference parameters

Conductances (mS/cm2). NMDA channels: gEE = 1.67,
gEI = 1.19; AMPA channels: gEE = 0, gEI = 0; GABA
receptors: gIE = 1.29, gII = 0.65.

Connectivity. J+ = 5.25, σ = 0.05.
Overall external excitation: uncorrelated Poisson spike

trains of 1,000 Hz per cell mediated by AMPA recep-
tors; conductances (mS/cm2): gext,E = 0.235, gext,I =
0.042.

2.2.2 Modeled neural mechanisms

We studied five distinct network instances, all based on
excitatory reverberation, but with potentially alterna-
tive neural mechanisms: reference mode (A), high E–E
mode (B), wide profile mode (C), bistable mode (D)
and low NMDA mode (E). The distinction was assessed
by simulations of all network instances using a common
simulation protocol with one cue and one distractor.

The reference mode (A), which used the unchanged
reference parameters, was characterized by low connec-
tivity between the excitatory cells. The rest of the net-
work modes contained a single modified characteristic
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compared to the reference mode. For the high excit-
atory connectivity mechanism employed in the high E–E
mode (B), the peak conductance of the NMDA chan-
nels was increased, gEE = 1.82 mS/cm2. The wide pro-
file mode (C) used a wide footprint of the excitatory
connectivity. This was achieved by simultaneously
decreasing the strength of the adjacent E–E connec-
tion (J+ = 4) and increasing the connectivity footprint
(σ = 0.07).

The bistable mode (D) used excitatory units with a bi-
stable regime in their firing pattern. Cellular bistability
have been attributed to voltage-dependent components
that can exhibit self-sustained activation, such as the
NMDA channel and voltage-sensitive Ca2+ channels
(Lee and Heckman 1998; Schiller and Schiller 2001).
Our model incorporated a Ca2+-activated non-selective
cationic (CAN) current into the membrane of the distal
dendritic compartment of the pyramidal cells (Tegnér
et al. 2002). This slow calcium-dependent current has
been identified in rat prefrontal neurons (Haj-Dahmane
and Andrade 1998). The bistable behavior of the neuro-
nal units allows them to switch between a low state and
a high state of activity depending on the temporary pro-
gress of the current magnitude. The size of the bistable
regime is proportional to the magnitude of the ICAN
channel conductance (gCAN). We used a gCAN value
of 0.2 mS/cm2 to assure a significant proportion of the
active units in the high mode of firing. One observed
advantage of networks composed of bistable units is
their ability to resist parameter modification to a higher
degree. The mechanisms underlying bistability are not
thought to influence this attribute (Koulakov et al. 2002).
Nonetheless, the biological substrate for bistable neu-
rons in human prefrontal cortex remains elusive.

For the low NMDA mode (E) the excitatory syn-
aptic transmission was dominated by AMPA receptor
currents. As previous work suggested, a substantial
AMPA component will destabilize the network by the
induced synchronous activity of the neurons (Wang
1999; Compte et al. 2000; Gutkin et al. 2001). The
NMDA-to-AMPA transmission ratio was gradually
reduced while preserving the total synaptic input current
until the persistent activity state was lost. For the Low
NMDA mode we used a ratio of 30% NMDA receptor
current. The conductances of the NMDA and AMPA
receptors were calculated using their relative contribu-
tion to the time integral of a unitary excitatory postsyn-
aptic current (EPSC) at −65 mV (Compte et al. 2000).

2.2.3 Network simulation protocol

The simulation protocol was chosen to replicate the
behavioral distractor trial protocol. However, only the

cue with the following distractor have been simulated in
the network instances. The models received only back-
ground activity the first 500 ms of the simulation. Both
cues and distractors were presented as synaptic inputs
which lasted for 150 ms and had identical stimulation
amplitudes. The cue consisted of a 0.8 µA/cm2 current
injected in the distal dendritic compartment which was
administrated to a population of 20 pyramidal neurons
having the preferred angle between 160◦ and 180◦. The
distractor current had identical characteristics as the cue,
and was elicited 750 ms after the cue onset at ten differ-
ent locations on the cell ring, ranging from 22.5◦ to 180◦
and including the five locations from the behavioral trial.

3 Results

We studied the relationship between spatial distance to
distractors and mnemonic performance in a behavioral
WM task. The experimental protocol was used in a com-
puter simulation of sustained activity in the prefrontal
cortex. Five distinct neural mechanisms were tested in
different modes of a recurrent network model.

3.1 Visuo-spatial WM task

The behavioral results for the 31 participants are pre-
sented in Fig. 3. The average accuracies (±SEM) as
a function of the distractor distance were 7.4 ± 3.8◦,
7.2 ± 2.7◦, 6.8 ± 2.9◦, 6.6 ± 2.4◦, 6.5 ± 3.1◦, for the dis-
tractor distances of 22.5◦, 45◦, 67.5◦, 90◦, 180◦, respec-
tively, and 6.1 ± 2.6◦ for the undistracted control.
A t-test for the difference between average accuracies
of distractor distances and control was significant only
for the closest distractor (P < 0.05 for 22.5◦ and P > 0.05
for longer distractor distances). If the individual aver-
ages were taken into consideration, a one-way ANO-
VA testing the dependency on the distractor distance
was found significant (P < 0.05). The post-test for lin-
ear trend between the means for every distance was
highly significant (P < 0.01, slope −0.55). Furthermore,
accuracy slopes calculated for all participants were sig-
nificantly different form the null hypothesis (t-test, P <

0.05). The behavioral results suggest that a cue which is
similar to a distractor will perturb the remembered tar-
get location with the highest effect being achieved with
the smallest distractor–target distance.

3.2 Neural network model

3.2.1 Spatiotemporal firing patterns

Figure 4 shows the raster plots for the network model
using the reference parameters. All network instances
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Fig. 3 Behavioral task results. The average accuracy drop-off for
all participants as a function of the distractor distance: higher dis-
tance leads to better accuracy (lower values). Visual distractors
appeared at 22.5◦, 45◦, 67.5◦, 90◦ and 180◦. The control baseline
represents average accuracy for undistracted targets. The points
are fitted with an exponential decay curve

used the same stimulation protocol as the behavioral dis-
tractor trial. The initial state of the network (0–500 ms)
was dominated by background activity. A transient cue
stimulus of 150 ms triggers the formation of a spatially
localized persistent activity state (bump attractor) which
was sustained during the whole simulation time (Fig. 4a).
The raster plot in Fig. 4b exemplifies a simulation with
distractor induced at 56.25◦ distance. We used the accu-
racy of the bump state location to quantify the distractor
distance effect. The accuracy was calculated as the aver-
age difference (θA) between the initial cue location right
after the cue onset time and the bump state location after
a delay period of 4 s (Fig. 4c).

3.2.2 Population firing profile

Electrophysiological studies performed on the
prefrontal cortex of monkeys have reported neuronal
firing rates of around 20 Hz for the neurons involved
in the delay activity of delayed response tasks (Fuster
1973; Funahashi et al. 1989). However, more recent stud-
ies have observed firing rates up to more than 60 Hz
when the cue is preferred (Constantinidis et al. 2001;
Compte et al. 2003). By allowing the slow NMDA cur-
rents to dominate the synaptic transmission, cortical net-
work models report firing rates in the range of 20–40 Hz
(Compte et al. 2000; Durstewitz et al. 2000).

Figure 5a shows the bump population firing profile
averaged over the last 500 ms of the simulation time.
The reference mode (A) demonstrated a narrow tun-
ing curve with low firing rates for the bump attrac-
tor population (average 22.9 Hz). The high E–E mode
(B) approached to the highest degree biophysical data,
showing a wide tuning curve, close to physiological
shapes found in monkeys (Funahashi et al. 1989) and

Fig. 4 Spatially localized persistent activity state of the network
models. The dots correspond to action potentials from pyramidal
cells. The x axis represents time, while y axis the preferred cue
(0◦–360◦) of the neurons. The cue is presented during 150 ms, to a
small fraction of the neurons with a preferred cue at 180◦. A per-
sistent activity state is induced by the cue which lasts during the
entire delay period. The lower trace represents the average firing
rate (100 ms bins) for the bump attractor population. a Network
simulation of the reference mode. b Reference mode with a dis-
tractor induced at 56.25◦ from the memorized cue. c Example of
accuracy drop-off of the memorized cue calculation for the refer-
ence mode with distractor presented at 56◦ (not shown). The angle
θA is the average difference between the initial bump location and
post-delay location

bump firing rates still within physiological range (aver-
age 37.5 Hz). The reduced adjacent E–E connection
strength of the wide profile mode (C) resulted in low
bump firing rates (average 20.5 Hz). The bistable units
of the bistable mode (D) showed as expected elevated
firing rates (average 32.1 Hz). The low NMDA mode
(E) had a narrow tuning curve with very high firing
rates (average 45 Hz). If a distractor is induced in the
network the firing rates of the initial bump measured
immediately after the distractor onset will be lowered,
with the highest effect observed for the closer distrac-
tors (Fig. 5b). Resistance to distractor influence proves
to be positively correlated with the firing rates across
the five network models tested.

3.2.3 Dependence on distractor distance

Figure 6a shows the accuracy of the memorized cue for
all five studied neural mechanisms as a function of the
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Fig. 5 Firing rate plots. a Population firing profile. Average fir-
ing rates of the undistracted memory bump for the last 500 ms of
the simulation time. All modes except the low NMDA mode gen-
erated firing rates within physiological values. Reference mode:
average 22.9, peak 36 Hz. High E-E mode: average 37.5, average
peak 56 Hz. Wide profile mode: average 20.5, peak 38 Hz. Bistable
mode: average 32.1 peak, 52 Hz. Low NMDA mode: average 45.0,
peak 78 Hz. (B) Firing rates of the memory bump in a time window
of 500 ms directly after distractor onset as function of distractor
distance. The points are average of eight noisy simulations and
fitted with an exponential decay curve

distractor distance. The modeled mechanism demon-
strated to have a clear distractor distance effect, with
the highest effect observed at the two closest distractor
distances (22.5◦ and 33.75◦). This distance dependency
resembles the connectivity curve of the E population
(Fig. 2b) which presented a Gaussian drop-off in gEE
with the E–E distance. The smooth drop-off in accu-
racy with distractor distance of the high E–E (B) and
low NMDA (E) modes resembled to the highest degree
the behavioral results. Differentiating these mechanisms
from the mechanisms with low excitatory connectivity,
the reference (A), wide profile (C) and bistable (D)
modes which showed a similar close distractor effect
seems straightforward. However, the similar behavior
of the unrelated mechanisms of high E–E (B) and low
NMDA (E) modes as well as the dissimilar performance
of the closely related reference (A) and high E–E (B)
modes indicate that the neural mechanism per se is
insufficient to account for the distractor distance effect.
We therefore tested whether the difference in the accu-
racies of the memorized cue is mainly attributed to the
firing rate of the bump attractor. For this, we adjusted the

inhibitory feedback (gIE) to the excitatory cells in order
to alter the firing rates of the five mechanisms and bring
them in the smallest range possible. Figure 6b shows
accuracy as function of distractor distance for modes A,
B, C and D with bump firing rates adjusted to 24.8, 26.5,
26.3 and 23.4 Hz, respectively. The firing rates of the low
NMDA (E) mode could not be reduced to values lower
than 44.8 Hz, thus this mechanism was ineligible. For the
closest distractor distance (22.5◦), the four mechanisms
fall within an accuracy range of 7.8◦ when operating at
original firing rates (Fig. 6a). This range decreased to
2.9◦ with the adjusted firing rates. For the longer dis-
tractor distances the range was reduced from 3.9 to 1.9◦.

The low NMDA mode (E) was surprisingly robust to
distractors. We explain this as a consequence of soar-
ing firing rates of the preferred cue neuronal population
(average 45 Hz). The drift of the bump is stabilized due
to the high level of feedback inhibition that promptly
rejects any new incoming stimuli. Given the fast decay
of AMPA currents, AMPA synapses remain unsaturated
while NMDA receptors saturate during the persistent
activity state of the network. For the same input current,
AMPA needs to surpass NMDA receptors peak conduc-
tance, consequently a dominant AMPA component to
the total synaptic drive leads to elevated firing rates.

In a subsequent analysis we mapped the whole feasi-
ble range of firing rates for the five neural mechanisms
as a function of accuracy. All network modes showed
a clear correlation between firing rate and accuracy
(Fig. 6c). Although showing the same accuracy—firing
rate correlation, the low NMDA (E) mode can be iso-
lated from the rest of the studied mechanisms due to
elevated bump firing rates.

These results suggest that the firing rate of the bump
attractor is the key factor influencing the accuracy of the
memorized cue. However, the firing rate may not be the
only factor responsible for the memory drift, but the par-
ticular firing pattern given by a neural mechanism may
account for some variation as all points in Fig. 6c did
not fall on a universal line. The low NMDA (E) mode in
particular, which generated highly synchronous activity,
showed higher accuracy drop-offs than expected for its
bump firing rates.

3.2.4 Mode-dependent parameter range

We mapped the span of the excitatory connection
strength mediated by the NMDA receptor channels
within the limits imposed in order to preserve the dyna-
mic stability of the network. We gradually increased the
peak conductance of NMDA transmission from 1.67
to 1.82 mS/cm2 (Fig. 7a). All other parameters were
unchanged. The lower limit marks the least synaptic
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Fig. 6 Accuracy drop-off analysis for the five studied mecha-
nisms. a Accuracy drop-off as a function of the distractor distance.
Using the standard simulation protocol all five neural mechanisms
were tested with distractors induced at ten distances, spanning
from 22.5◦ to 180◦ from the initial location of the memorized cues.
The series are averages of eight noisy simulations with the con-
trol baseline (no distractor) subtracted. The points are fitted with
an exponential decay curve. The distractor distance effect was
found to be of similar magnitude in the behavioral experiment
compared to the High E-E and Low NMDA modes. b The firing
rates of the five network modes were adjusted to similar values
producing a much narrower range of accuracy drop-offs between
different modes. c Accuracy drop-offs as a function of firing rate
of the memory bump. The entire firing rate range of all modes was
mapped by means of inhibitory feedback to excitatory cells (gIE)

variation. The standard simulation protocol with a distractor at
33.75◦ was used

current required to uphold the cue-induced bump
attractor during the entire simulation time when a dis-
tractor is applied at 33.75◦. The value chosen as refer-
ence (1.67 mS/cm2) was the smallest value to satisfy this

condition. Beyond the higher limit random persistent
activity destabilizes the network. We used gEE = 1.82
mS/cm2for the high excitatory connectivity simulations.
The highest accuracy (lowest value) was observed in the
middle of the interval (1.73 < gEE < 1.78). Widening the
connectivity footprint also seemed to improve the accu-
racy (Fig. 7b). σ was increased from the reference value
0.050 to 0.062, value that rendered firing rates of the
bump which exceeded physiological values. Increasing
the gCAN value increased the depolarizing currents that
entered the dendritic compartments resulting in almost
monotonic accuracy improvement (Fig. 7c)

The fast excitation mediated by the AMPA recep-
tors followed by a slower inhibition mediated by the
GABA receptors promotes oscillations which destabi-
lize the network (Wang 1999). Although the relative
contribution of NMDA and AMPA receptors is still a
matter of debate, physiological studies have found per-
sistent activity to be more sensitive to NMDA recep-
tor block than to AMPA receptor block (Dudkin et al.
1997; Shima and Tanji 1998; Aura and Riekkinen 1999).
Additionally, the human prefrontal cortex is reported
to have the highest NMDA receptor density of all cor-
tical areas (Scherzer et al. 1998). While preserving the
total synaptic drive we gradually decreased the NMDA-
to-AMPA ratio until the persistent activity state was
destabilized (Fig. 7d). If the NMDA receptor contri-
bution is dominant the neuronal firing is asynchronous
( > 75% NMDA). A decreased NMDA receptor compo-
nent synchronizes the firing pattern and the sustained
activity is lost (<25% NMDA). Interestingly, increas-
ing the AMPA component improves the accuracy of the
memorized cue, with the highest accuracy attained in an
interval between 40 and 90% NMDA contribution to
the total synaptic drive.

We further investigated how the accuracy criterion is
correlated to the distractibility of the network model.
Distractibility reflects the capacity to uphold the persis-
tent activity state in the presence of distracting
stimuli. Accuracy was altered by adjusting the excit-
atory connection strengths within physiological range
(gEE = 1.57 − 1.72 mS/cm2). We mapped the small-
est intensity of the distractor current that successfully
led to the extinction of the bump attractor (Fig. 7e).
We found an inverse correlation between accuracy and
distractibility of a memorized cue.

4 Discussion

Our results strengthen the current hypothesis which
attributes the temporary storage of the information to
stimulus selective persistent neural activity—the
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Fig. 7 Accuracy drop-off
plot for mode-dependent
parameter variation.
Distractor present at 33.75◦.
a NMDA channel
conductance between
excitatory cells. b Width of
the excitatory connectivity.
c Dendritic CAN channel
conductance. d Relative
contribution of the NMDA
receptors to the time integral
of a unitary excitatory
postsynaptic current EPSC
(−65 mV). e Accuracy
drop-off versus distractibility
of a memorized cue.
Increased cue accuracy (lower
values) was correlated with
higher distractor currents
needed to abolish the
cue-induced state of
persistent activity. Every dot
corresponds to a network
instance with different E-E
connections strengths
(gEE = 1.57 − 1.72 mS/cm2).
The distractor had the same
characteristics as a cue
stimulus (intensity and
duration) except that it was
presented 500 ms after the cue
onset at 56◦ distance

neurophysiological correlate of working memory.
Although the identity of the key cellular mechanism
which underlies working memory has been controversial
(Wang 2001; Miller and Cohen 2001), our work is to our
knowledge the first to integrate computational model-
ing with behavioral experiments to evaluate different
suggested neural mechanisms. Here, we have presented
behavioral evidence for a strong recurrent connectivity
where the firing rate during the delay plays the major
role and interestingly enough, the underlying neural
mechanisms generating the neuronal circuit dynamics
is not crucial to explain the behavioral data. In consen-
sus with behavioral results, we found that the sensitivity
to distractors in recurrent cortical models decreases with
the distractor distance to the location of the memorized
cue, regardless of the neuronal mode of operation.

Secondly our study suggests that a cortical network
operating in a low NMDA mode sustaining the per-
sistent activity is not consistent with the firing rates
observed in experiments. Moreover, reducing the rela-
tive amount of synaptic NMDA current, the in
silico network demonstrated increased potential for syn-
chronous oscillation between the neurons (Tegnér et al.
2002), but yet the circuit actually displays a similar

distance-dependent effect of distractors as observed in
the behavioral experiment. The narrow tuning curve
with elevated firing rates of preferred cue neuronal pop-
ulation is different from previous electrophysiological
findings (Funahashi et al. 1989) which could be taken as
further evidence that a low NMDA mode of operation
is less likely to be the case. Finally, if the recurrent exci-
tation was supplemented with intrinsic bistability due
to dendritic ICAN currents, we found higher firing rates
with only a slight increase in the cue accuracy. Further
theoretical and experimental studies are necessary to
elucidate cellular bistability of the cortical neurons.

When the excitatory synaptic input in the network
was set to values in the lower regime of the physiological
range, the model showed a significantly lower mnemonic
accuracy compared to the behavioral results. If the con-
nectivity profile was widened, the strength of the stron-
ger adjacent connections could be lowered, yielding a
similar bump firing rate and accuracy of the memorized
cue.

Realistic distractor effects and population firing
profile are found if the reverberatory synaptic input to
the excitatory units is set in the higher region of the
physiological range of connectivity strengths.
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4.1 Accuracy of memory location

For the simulation study, we considered the difference
between the accuracy drop-offs of the undisrupted cues
and cues followed by distractors. This difference was
compared with the corresponding behavioral values and
the similarity gave the quantitative basis when evaluat-
ing the five tested neural mechanisms. We deliberately
did not use the absolute accuracy drop-off values for
evaluation purposes as the undisrupted “base line” accu-
racy drop-off depends not only on the memory decay but
also on factors like the maximum value allowed for the
accuracy drop-off (20◦ here, see Sect. 2) and the frac-
tion of the visual field the presentation screen covers.
As the network model did not account for these sources
of uncertainty a comparison of the behavioral and simu-
lated absolute accuracy drop-offs cannot be performed.

Following experimental results like (Miller et al. 1996)
several previous studies (Koulakov et al. 2002; Brody
et al. 2003) have stressed the necessity of robustness to
distractors of cortical networks representing WM. The
elevated non-selective inhibition rate of a recurrent net-
work in persistent activity state offers resistance to inter-
vening stimuli. This is true as long as distractor intensity
is low or the distance between the bump state and dis-
tractor stimulus is sufficiently large. The persistent activ-
ity state of the network will eventually subside for high
distractor amplitudes. The E to E connectivity structure
of the model is the key factor understanding the distrac-
tor distance effect observed in recurrent models.

The observed instability of the memorized target loca-
tion after a variable delay period has been previously
studied in humans (Ploner et al. 1998) and monkeys
(White et al. 1994). The loss in accuracy was attributed
to both systematic errors that were similar in size for
any studied delay intervals and to variable errors that
increased monotonically as delay intervals were length-
ened. Theoretical studies have accredited the random
drift of memory to tuned inhibitory feedback on excit-
atory cells (Ben-Yishai et al. 1997). Our computational
study suggests that the magnitude of the memory drift is
correlated to the distractibility of the cue. High memory
drifts imply high distractibility. The finding is however
yet to be observed in behavioral experiments.

4.2 Relation to multiple-item representations

The present computational study represents one target
cue along with the following distractor stimulus. This
apparent difference between the computational model
and the experimental design could be interpreted as
weakness of the study. However, because this class of
WM models can maintain multiple items (Macoveanu

et al. 2006), simulating an isolated cue and distractor is
highly representative even for a multiple-item model of
the delayed-response task. The accuracy criterion used
reflects intrinsic functional characteristics of the neuro-
nal units and their recurrent connections, being indepen-
dent of the number of represented cues. Our finding that
the firing rate is the main determinant of the effect of a
distractor further supports the notion that the particular
neuronal mechanisms underlying a multi-item mode of
operation is of less relevance here.

4.3 Experimental design considerations for distracting
the human working memory

An important property of the prefrontal cortex is the
extent to which it can retain information in WM in spite
of distraction (Cornette et al. 2001; Sakai et al. 2002).
There are numerous studies showing how working mem-
ory capacity interacts with interference. Subjects with
lower working memory capacity are more prone to make
erroneous saccades to irrelevant stimulus locations
(Roberts et al. 1994; Kane et al. 2001). WM showed to be
crucial for directing attention appropriately in selective
attention tasks through the active maintenance of stim-
ulus priorities. Consequently, a high working memory
load increases the interfering effect of a distractor (de
Fockert et al. 2001; Lavie et al. 2004). It thus seems as
the relationship between working memory capacity and
working memory load determines how much interfering
effect a distractor has. Our behavioral task incorporates
previous psychological and experimental knowledge of
working memory capacity and distractibility. Interest-
ingly, initially it proved difficult to distract the human
subjects. We had therefore to consider the experimental
design carefully. The delayed-response task was con-
structed to maximize the task demand thus facilitating
distraction. This was achieved by using a number of
cues that tapped the general visuo-spatial WM storage
capacity (Todd and Marois 2004; Vogel and Machizawa
2004) and distractors which resembled the visual stim-
uli (Treisman and Gelade 1980). Furthermore, we con-
sidered the distracted cue from the middle of the cue
sequence because of the lower retention probability
of the target as predicted by the serial position effect
(Thomas 1968).

4.4 Outlook and experimental predictions

The present study makes several statements and pre-
dictions. For the ensuing discussion it should be noted
that a small accuracy drop-off means that a manip-
ulation has a small effect on the accuracy; the mne-
monic accuracy is therefore high under this condition.
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First, mnemonic accuracy is directly proportional to the
spatial distance between cue and distractor, as validated
by both behavioral (Fig. 3) and computational exper-
iments (Fig. 6a, b). A nearby distractor perturbs the
cue more than a distant distractor and the behavioral
response is consequently less accurate. Secondly, the
computational analysis demonstrates that accuracy is
also inversely proportional to distractibility (Fig. 7e).
Third, it can therefore be inferred that the distance
between the cue and distractor is inversely proportional
to distractibility. Hence, a behaviorally weak distractor
at small distance is predicted to have a similar effect on
the mnemonic accuracy as behaviorally stronger or more
relevant distractor at a larger distance from the encoded
cue. To the best of our knowledge this has not yet been
examined experimentally. Fourth, the study revealed
that the firing rate and not the neural mechanism per se is
directly proportional to the mnemonic accuracy (Fig. 6).
Fifth, recent experimental studies (Klingberg et al. 2005)
have demonstrated that the capacity of working mem-
ory, the ability to maintain several items across time
can be improved through computerized working mem-
ory training. A neuronal correlate to this remarkable
result has recently been identified. Imaging experiments
(Olesen et al. 2004) detected that working memory
training induces a selected increase of the brain activ-
ity. However, the neuronal mechanisms underlying the
effects of the training are yet unclear. The present study,
which demonstrates the positive correlation between
the mnemonic accuracy and firing rate, suggests that
the observed increase in brain activity could correlate
with an increased firing rate, and therefore increased
mnemonic accuracy. A recent experimental study con-
ducted by Olesen et al. (2005) confirms a tight rela-
tion between WM capacity, delay related elevated brain
activity and mnemonic accuracy. Those results in con-
junction with the results of the present study predict that,
after the memory training, stronger distracting stimuli
are required to disrupt the mnemonic activity during a
delay-period task. This is a testable suggestion. Finally,
if the working memory training affects neural mecha-
nisms in such a manner that the delay-related firing rate
increases, then the present study accounts for the bene-
ficial effects on mnemonic accuracy and distractibility.
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