Changes in Cortical Dopamine D1 Receptor Binding Associated with Cognitive Training
Fiona McNab, et al.
Science 323, 800 (2009);
DOI: 10.1126/science.1166102

The following resources related to this article are available online at www.sciencemag.org (this information is current as of February 6, 2009):

Updated information and services, including high-resolution figures, can be found in the online version of this article at:
http://www.sciencemag.org/cgi/content/full/323/5915/800

Supporting Online Material can be found at:
http://www.sciencemag.org/cgi/content/full/323/5915/800/DC1

This article cites 27 articles, 12 of which can be accessed for free:
http://www.sciencemag.org/cgi/content/full/323/5915/800#otherarticles

This article appears in the following subject collections:
Neuroscience
http://www.sciencemag.org/cgi/collection/neuroscience

Information about obtaining reprints of this article or about obtaining permission to reproduce this article in whole or in part can be found at:
http://www.sciencemag.org/about/permissions.dtl
Changes in Cortical Dopamine D1 Receptor Binding Associated with Cognitive Training

Fiona McNab,1 Andrea Varrone,2 Lars Farde,2,3 Aurelija Jucaite,2,3 Paulina Bystritsky,1 Hans Forssberg,1 Torkel Klingberg*2

Working memory is a key function for human cognition, dependent on adequate dopamine neurotransmission. Here we show that the training of working memory, which improves working memory capacity, is associated with changes in the density of cortical dopamine D1 receptors. Fourteen hours of training over 5 weeks was associated with changes in both prefrontal and parietal D1 binding potential. This plasticity of the dopamine D1 receptor system demonstrates a reciprocal interplay between mental activity and brain biochemistry in vivo.

Dopaminergic neurotransmission has a central role in WM performance (13–16), and cortical dopamine release has been observed in humans during the performance of WM tasks (17). In nonhuman primates, locally applied D1 agonists, as well as antagonists, affect both performance and the neuronal firing patterns of prefrontal neurons when information is kept in WM (18, 19). The effects seem to be dose-dependent (15, 16), with evidence of an optimal level, so that either too much or too little stimulation of D1 receptors results in reduced WM performance or tuning of prefrontal activity (18–21).

The availability of dopamine can lead to the translocation of dopamine D1 receptors from the cytosol to the plasma membrane (22), and down-regulation of striatal dopamine D2 receptors has been shown to occur after 7 days of motor training (16). Intensive training on WM tasks can improve WM capacity (8–12) and reduce cognitively related clinical symptoms (10). Training-related improvements in WM have been associated with an increase in brain activity in parietal and frontal regions linked to WM (9), but the biochemical underpinnings of cognitive training are unknown.

1Neuropediatric Unit, Department of Woman and Child Health, Stockholm Brain Institute, Karolinska Institutet, Stockholm, Sweden. 2Department of Clinical Neuroscience, Stockholm Brain Institute, Karolinska Institutet, Stockholm, Sweden. 3AstraZeneca Research and Development, Södertälje, Sweden.

*To whom correspondence should be addressed. E-mail: torkel.klingberg@ki.se

Fig. 1. Maps of baseline D1 and D2 BP, averaged across 13 human volunteers. (A) The averaged MRI, normalized to MNI space. (B) D1 BP, measured with [11C]SCH23390, averaged across participants (the bar shows absolute D1 BP). (C) Overlay of (B) on (A). (D) D2 BP, measured with [12C]Raclopride, averaged across participants (the bar shows absolute D2 BP). (E) Overlay of (D) on (A).
training in developing rats (23). However, the regulation of dopamine receptors as a result of cognitive training has not been studied. We thus investigated the possibility that up- or down-regulation of cortical D1 receptors and subcortical D2 receptors is associated with intensive mental activity during cognitive training.

We used a previously described method of WM training in which participants perform WM tasks with a difficulty level close to their individual capacity limit for about 35 min per day over a period of 5 weeks (8–10). Thirteen volunteers (healthy males 20 to 28 years old) performed the 5-week WM training. Five computer-based WM tests (three visuospatial and two verbal) were used to measure each participant’s WM capacity before and after training, and they showed a significant improvement of overall WM capacity (paired t test, $t = 11.1$, $P < 0.001$). The binding potential (BP) of D1 and D2 receptors was measured with positron emission tomography (PET) while the participants were resting, before and after training, using the radioligands [11C]SCH23390 and [11C]Raclopride, respectively (Fig. 1).

To identify brain regions implicated in WM, we conducted functional magnetic resonance imaging (fMRI) on each individual. By comparing activity during a WM task to that during a control task, we identified regions specifically linked to WM ($P < 0.05$, false discovery rate corrected). This resulted in five regions of interest (ROIs) (Fig. 2, A to E), which were used to constrain the analysis of the D1 BP as follows: (i) A right posterior ROI, which included regions of the right parietal, temporal, and occipital cortices; (ii) a left posterior ROI, which included regions of the left parietal, temporal, and occipital cortices; (iii) a right dorsolateral prefrontal ROI, which included the right middle frontal gyrus and right superior frontal gyrus; (iv) a left frontal ROI, which included the left middle frontal gyrus; and (v) a right ventrolateral prefrontal ROI, which included the right inferior frontal gyrus. For calculation of D2 BP, bilateral caudate and putamen ROIs were defined anatomically. Although WM activity in the basal ganglia was not identified from the fMRI data in the present study, these regions have previously been associated with WM (11, 24) and are known to have a high density of D1 and D2 receptors (Fig. 1D).

Based on suggestions of an inverted u-shape relationship between DA levels and performance, we analyzed the outcome using both linear (WM = $a + b_1$BP) and quadratic (WM = $a + b_1$BP + b_2BP2) regression models (where a is the intercept and b_1 and b_2 are the regression coefficients).

First we averaged baseline D1 BP across the five cortical ROIs and averaged baseline D2 BP in the four subcortical ROIs, then analyzed the relationship with overall WM capacity before training. There was no significant association for either D1 or D2 BP (D1: linear $r^2 = 0.09$, $P = 0.33$; quadratic $r^2 = 0.34$, $P = 0.12$ for the whole.

Fig. 2. (A to E) The five posterior (red) and frontal (green) cortical ROIs, identified from the fMRI results (the contrast of activity recorded during the WM task minus activity recorded during a control task) and used to constrain the analysis of D1 BP. The blue lines indicate where the axial and coronal planes intersect. (F to J) The application of the quadratic model for the analysis of change in WM capacity for each of the ROIs. The x axis shows D1 BP before training, the y axis the D1 BP after training, and the z axis the improvement in WM. The colored surface represents predicted values, with warmer colors representing higher values on the z axis. The black circles represent the observed data. This model predicted change in WM capacity in all except the left frontal ROI (right posterior: $F(2,10) = 4.87$, $P = 0.033$; left posterior: $F(2,10) = 4.82$, $P = 0.034$; right dorsal frontal: $F(2,10) = 7.19$, $P = 0.012$; left frontal: $F(2,10) = 0.71$, $P = 0.515$; right ventral frontal: $F(2,10) = 5.38$, $P = 0.026$).
Axon Regeneration Requires a Conserved MAP Kinase Pathway

Marc Hammarlund,1,2‡ Paola Nix,1‡ Linda Hauth,3 Erik M. Jorgensen,1,2 Michael Bastiani1‡

Regeneration of injured neurons can restore function, but most neurons regenerate poorly or not at all. The failure to regenerate in some cases is due to a lack of activation of cell-intrinsic regeneration pathways. These pathways might be targeted for the development of therapies that can restore neuron function after injury or disease. Here, we show that the DLK-1 mitogen-activated protein (MAP) kinase pathway is essential for regeneration in Caenorhabditis elegans motor neurons. Loss of this pathway eliminates regeneration, whereas activating it improves regeneration. Further, these proteins also regulate the later step of growth cone migration. We conclude that after axon injury, activation of this MAP kinase cascade is required to switch the mature neuron from an aplastic state to a state capable of growth.

S evered neurons can regenerate. After axons are cut, neurons can extend a new growth cone from the axon stump and can attempt to regrow a normal process. Most invertebrate neurons are able to regenerate, as are neurons in the mammalian peripheral nervous system. By contrast, neurons in the mammalian central nervous system have limited regenerative capability (1). Regeneration is thought to be initiated by signals arising from the injury, including calcium spikes and the retrograde transport and nuclear import of regeneration factors (2). These mechanisms lead to increased cyclic adenosine monophosphate (cAMP) levels, local and somatic protein synthesis, and changes in gene transcription that, in turn, promote remodeling of the cytoskeleton and plasma membrane at the site of injury. The ability of specific neurons to regenerate is deter-