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Abstract

■ Limitations in the performance of working memory (WM)
tasks have been characterized in terms of the number of items
retained (capacity) and in terms of the precision with which the
information is retained. The neural mechanisms behind these
limitations are still unclear. Here we used a biological con-
strained computational model to study the capacity and preci-
sion of visuospatial WM. The model consists of two connected
networks of spiking neurons. One network is responsible for
storage of information. The other provides a nonselective excit-
atory input to the storage network. Simulations showed that
this excitation boost could temporarily increase storage capac-
ity but also predicted that this would be associated with a

decrease in precision of the memory. This prediction was sub-
sequently tested in a behavioral (38 participants) and fMRI
(22 participants) experiment. The behavioral results con-
firmed the trade-off effect, and the fMRI results suggest that
a frontal region might be engaged in the trial-by-trial control
of WM performance. The average effects were small, but in-
dividuals differed in the amount of trade-off, and these dif-
ferences correlated with the frontal activation. These results
support a two-module model of WM where performance is
determined both by storage capacity and by top–down influence,
which can vary on a trial-by-trial basis, affecting both the capac-
ity and precision of WM. ■

INTRODUCTION

Working memory (WM) is the ability to keep information
in mind during a short period of time and is a fundamental
component of many cognitive functions (Conway, Kane,
& Engle, 2003; Cowan, 2001; Baddeley, 1986). Limita-
tions in the amount of information that one can retain
is a key characteristic of WM, determining individual dif-
ferences in a wide range of cognitive tasks (Cowan, 2001,
2010; Kyllonen & Christal, 1990). These limitations have
been described in terms of themaximum number of items
about which one can simultaneously retain information
(capacity) and in terms of the exactness of the remem-
bered information (precision). A great amount of experi-
mental and theoretical work has dealt with characterizing
WM, in particular the limitations in visual WM. One theory,
the “slots model,” suggests that there is a discrete fixed
number of items or “slots” that each individual can remem-
ber (Anderson, Vogel, & Awh, 2011; Zhang & Luck, 2008;
Luck & Vogel, 1997). Another theory, the “resources
model” (van den Berg, Shin, Chou, George, & Ma, 2012;
Huang, 2010; Bays, Catalao, & Husain, 2009; Bays &
Husain, 2008; Wilken & Ma, 2004), suggests that WM is
better described as a resource that can be divided among

the objects to retain in memory, so that the precision of
the memories decreases with the number of items, without
an upper limit on this number. Finally, others (Buschman,
Siegel, Roy, & Miller, 2011; Xu & Chun, 2006; Alvarez &
Cavanagh, 2004) have proposed hybrids of these twomore
extreme theoretical models suggesting that WM resources
can be divided among items, that this sharing of resources
has an impact on the precision of memories, but that there
is still an upper limit of items that can be held in WM. Thus,
the relation between capacity and precision as well as the
biological origins of these limitations remain unclear.

Mechanistic hypotheses for visuospatial WM (vsWM)
are specified in a computational network model in which
short-term visuospatial memories are stored by selective
sustained elevated neuronal activity (Edin et al., 2009;
Compte, Brunel, Goldman-Rakic, & Wang, 2000). The
model consists of a network of integrate-and-fire excita-
tory and inhibitory neurons connected so that selective
activity can be maintained after stimulus offset. Rather
than modeling WM in a single storage area, Edin et al.
(2009) proposed amodel with twomodules: a storage area
(e.g., parietal cortex) and a boost area (e.g., pFC) respon-
sible for an excitatory nonselective input evenly received
by the cells of the storage network. Analysis of this model
suggested that the storage capacity can be increased by a
top–down excitatory input or “boost signal” to the storage
area (Edin et al., 2009). This hypothesis was shown to be
consistent with behavioral and fMRI data: Interindividual
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differences in WM capacity correlated with the amount of
activation of a prefrontal boosting area and with fronto-
parietal functional connectivity (Edin et al., 2009). Other
works have also addressed context-dependent adjust-
ments of performance on visual WM tasks, some show-
ing that memory precision can be regulated for a small
number of items (Machizawa, Goh, & Driver, 2012;
Zhang & Luck, 2008) whereas others failed to show regu-
lation for higher number of items (Zhang& Luck, 2011). In
particular, it has been recently shown (Machizawa et al.,
2012) that participants are able to adjust at the trial-by-trial
level the precision with which they store a few items in
WM. Here, we hypothesized that capacity boosting (Edin
et al., 2009) and precision enhancement (Machizawa et al.,
2012) could share a commonmechanism in the top–down
boost signal proposed by Edin et al. (2009). We further
hypothesized that an increase of capacity through a boost
signal could be engaged with the time resolution of single
trials. This would imply that manipulations of precision
would affect WM capacity, and conversely similar
trial-by-trial adjustments of capacity should result in
changes ofWMprecision.We first tested these hypotheses
in a computational model and derived a concrete predic-
tion about how manipulating vsWM capacity through a
boost signal should affect the precision of the memories.
To test the prediction, we designed a behavioral protocol
based on the assumption that a cue about the number of
items (load) to be expected in a given trial could result
in selective engagement of a boost signal on a trial-by-trial
basis. This behavioral protocol was used in one behavioral

and one fMRI experiment to validate the modelʼs predic-
tion. We thus establish a within-trial interdependence
of capacity and precision in vsWM, and we propose a
plausible mechanistic substrate based on a boost, possibly
top–down, input to a storage area. Our computational
model then describes a possible biological mechanism be-
hind a trade-off effect in WM where more items can be
stored at a cost of reduced precision. Such a trade-off is
hypothesized by a resource view of WM and appears as a
prediction in our biologically constrained model, which
however has an upper limit on the number of memories
that can be retained. Hence, our model offers a biologi-
cally plausible implementation of a hybrid WM model,
thus helping to reconcile alternative views of WM as a
resource or a limited number of slots.

METHODS

Model

The computational model consists of two connected net-
works of spiking neurons: one corresponding to a storage
area and one corresponding to a boost area responsible
for a boost signal to the storage area (Figure 1). The neu-
rons in the storage area are modeled to encode positions
(in angle) on a circle. Presentation of an item at a given
angle is simulated by an input to the corresponding cells.
Connections between neurons are tuned so that neurons
encoding similar angles have stronger connections than
neurons encoding far apart angles. This tuning allows

Figure 1. Computational model. (A) Schematic representation of the computational model formed by a boost and a storage network. The ring
organization of the storage network and the connectivity structure between its excitatory neurons (represented as triangles) is illustrated. The profile
of connectivity strengths for the storage network is shown in the plot on the left. (B and C) Example of the neuronal activity of excitatory neurons for
a simulation with a stimulus with Load 3 (three positions to keep in memory). Each dot represents an action potential. Stimuli presentation of
500 msec, indicated with a gray background. (B) Simulation with low input from the boost network (top) to the storage network (bottom): The capacity
of the model is lower (some items are forgotten), but precision is higher (the positions remembered are closer to the target positions). (C)
Simulation with high input from the boost network (top) to the storage network (bottom): The capacity of the model is higher (no items are
forgotten), but precision is lower (the memory traces deviate more from the target locations, and thus, items are remembered with less precision).
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the network to maintain localized bumps of high activity
upon stimulation of a given angle. Furthermore, it allows
that these localized bumps are maintained after stimulus
offset, hence corresponding to maintenance of WM.
For simplicity, the boost network is equal to the storage

network with the exception that the connectivity between
neurons is not tuned. Because of this, the network is not
able to sustain localized bumps of high activity and hence
selective memory. The boost network is either globally
activated and giving a nonspecific boost signal to the stor-
age area or globally inactivated. The boost signal increases
the capacity of the storage network (Edin et al., 2009). A
mathematical description of the model and parameters
used are given in the Appendix.
Each model simulation started with 100 msec of baseline

activity, followed by onset of stimulus-specific stimulation
for 500 msec. For trials with high boost, the excitatory neu-
rons in the boost network received an external unspecific
input for 100 msec at stimulus onset. This input caused
the boost network to enter a state of global persistent high
activity. Figure 1 shows examples of activity in the boost
and storage networks in the case of low input (Figure 1B)
and high input (Figure 1C) from the boost area.
To study the effect of the boost signal to the storage net-

work, we ran 300 simulations for Loads 3 and 4, as themod-
el was originally tuned to. The stimulations were made to
model items positioned at random positions around a cir-
cle, with the only restriction that they could not be closer
than 33°. The results were analyzed in terms of capacity
and precision. Capacity was measured as the relative num-
ber of memories that persisted 1 sec after stimulus offset.
Precision was measured as the inverse of the standard de-
viation across trials of the location of memories that per-
sisted after 1 sec. The location of the memories was read
out from the population vector (Lee, Reis, Seung, & Tank,
1997;Georgopoulos, Schwartz,&Kettner, 1986) of the neu-
rons belonging to a bumpof activity, using action potentials
from 900msec to 1 sec after stimulus offset. The memories
were considered to persist if the norm of the population
vector was higher than 25. The population vector is an aver-
age of the preferred direction of the neurons, weighted by

the number of action potentials they emit. To determine if
a neuron was contributing to a bump, we used a recursive
algorithm.We started by attributing each neuron to one and
only one memory, that of the item closest to its selectivity.
Then we calculated the population vector for eachmemory
bumpusing the neurons attributed to thatmemory that had
preferred direction less than 35° away from the stimulus.
The population vectors give estimations of the centers of
the memory bumps. These estimations were refined re-
peating the procedure described above with the differ-
ences that neurons were now attributed to the nearest
center of memory bump and that a new population vector
was now calculated using neurons that had preferred direc-
tions less than 12° away from the estimated center of the
memory bump. Further repeating this recursive procedure
did not change the estimated centers of thememory traces.

Behavioral Experiment

Participants

Thirty-eight volunteers (two left-handed; average age and
standard deviation, 25 ± 5 years) participated in the ex-
periment. All had normal or corrected-to-normal vision.
The study was approved by the ethical review board of
Karolinska Institutet, Sweden, and all participants gave
written informed consent before the experiment.

Apparatus

Stimuli were presented on a computer screen, and the
experimental procedure was controlled by Eprime soft-
ware (version 2.0, Psychology Software Tools, Inc.,
Sharpsburg, PA). Responses were given using a standard
mouse. Participants were in a quiet room looking at a
screen positioned 60 cm away at eye level.

Experimental Paradigm

The experimental task was a visuospatial task, requiring
the participants to recall the positions of three or five items
simultaneously presented along a circle (Figure 2). A trial

Figure 2. Schematic
representation of the sequence
of screens in the experimental
procedure of the behavioral
experiment.
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consisted of the following sequence: First, a blue fixation
cross appeared in themiddle of a black screen for 500msec.
Then, a cue indicating the number of items to be expected
on the current trial was presented for a variable time (1500,
2000, 2500, 3000, or 3500 msec, counterbalanced over
conditions). Immediately after the cue, the stimulus was
presented for 1000 msec. Then, there was a variable delay
(1000, 2000, or 3000 msec) during which only the fixation
cross remained on the screen. Finally, the response screen
appeared, and the participants indicated the remembered
locations of the items with the mouse. Participants were
asked to fixate on the cross during the trial. There was
an intertrial interval of 2000 msec, during which the
screen was completely black.

The cue was a number (3 or 5) in blue indicating how
many items should be expected in the current trial. The
stimulus consisted of three or five items (blue dots with
radius of 1.85 visual degrees), randomly positioned on a
visible blue circumference (radius of 25.5 visual degrees)
centered on the visible fixation cross. The minimum angle
between two neighboring items was 45°. On the response
screen, the circumference and the fixation cross remained
on the screen. A small red indication mark was displayed
at a random location on the circle as well as the mouse
pointer. Participants were required to click on the remem-
bered positions of the items, in a counter clockwise order,
starting from a red indication mark. The response phase
was terminated by a right mouse button click.

An important point is that the cue did not correspond
to the actual number of items presented on all trials but
only matched on a fraction of trials (true cue trials). On
the rest of trials (less than 23%), the cue did not match
the number of items (false cue trials). Additionally, for
some participants a trial type with Cue 0 was inserted: In
these trials, the stimulus presentation was the same (three
or five items), but participants did not have to remember
them: In the response screen, the items were shown again
and the participant had to click the indicated positions.
These Cue 0 trials were not analyzed.

The experiment consisted of at least 150 Cue 3/Load 3
trials, at least 150 Cue 5/Load 5 trials, 45 Cue 3/Load 5
trials, 45 Cue 5/Load 3 trials, and 60 Cue 0 trials (for partic-
ipants who had those trials). The experiment was divided
in a minimum of eight blocks of 50 trials and took around
90 min.

Data Analysis

Each response (mouse-click) shows some deviation from
the original true item location. This deviation was modeled
using a probabilistic model previously introduced to ac-
count for performance on a recall task where both stimuli
and responses are chosen from a circular parameter space
(Bays et al., 2009; Zhang& Luck, 2008). Themodel assumes
that the experimental distribution of errors fexp(Δθ) can be
described as a mixture of a von Mises distribution fVM(Δθ|s)
with dispersion parameter s and a uniform distribution

fU(Δθ): fexp(Δθ) = (1 − u)fVM(Δθ|s) + ufU(Δθ). The idea
is that when there is a memory of the item the responses
over trials will be distributed around the true position fol-
lowing a von Mises distribution with some dispersion s.
However, when the location of the itemhas been forgotten,
the participant will guess and hence the responses will fol-
lowauniformdistribution.One can thenestimate theparam-
eters of the mixture model u, s and obtain estimates for
the number of items retained in memory (1 − u) and pre-
cision (1/s) of the responses. The quantity (1− u) relates to
WM capacity. It has been proposed that a measure of capa-
city can be obtained by multiplying (1 − u) with the load
(Zhang & Luck, 2008). In our work, we are using (1 − u)
directly because our aim is to characterize differences in
(1 − u) for fixed load (see below). The parameters u and
s were estimated using the functions described in Zhang
and Luck (2008) and Bays et al. (2009) and available at
www.sobell.ion.ucl.ac.uk/pbays/resources.htm. Trials with
an incorrect number of responses and trials where a click
was given too far from the background circle (arbitrary
threshold of 7.65 visual degrees) were removed. In some
cases, it could be that because of imprecision in the remem-
bered locations a participant mistakes the identity of the
first item and therefore reports the remembered location
of another item. Similar types of mistakes that result in
the participant reporting remembered information for a
nontargeted item have been modeled using a mixture
model with three components (Bays et al., 2009). The
third component models the response to a nontarget item.
In the current experiment, we did not have enough trials to
estimate one more parameter from the model. Instead, we
checked the data for evidence of the described type of
mistakes. In particular, we checked if for a given trial the
positions indicated by the responses were better matched
with the stimulus assuming that the participant had
started from the last or second item. This was the case
on only 1% of the trials. When this happened, we relabeled
the clicks according to what the participant probably
thought was the first item.
Estimates of capacity and precision were obtained

using data from the first response (mouse-click) on each
trial to ensure that responses were as independent as pos-
sible within a participant. However, the use of just one
click per trial led to less than 50 responses per participant
for conditions with false cues. This number of responses is
too low for a reliable estimation of the parameters using
the mixture model. To overcome this problem, we pooled
data across participants and estimated an average s and u
for all participants for each of the four trial types: Cue 3/
Load 3, Cue 5/Load 3, Cue 3/Load 5, Cue 5/Load 5. Then
we calculated the effect of cue on s and u for each load.
Note that pooling data across participants might inflate
the estimates of s because of possible inconsistent recalling
bias across participants, which would mean that responses
from different participants reflect von Mises distributions
with unequal means. However, this eventual inflation
should be similar for all trial types and hence should not
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affect differences of s and u between conditions. To test
the hypothesis that there was no trade-off effect of cue
on precision and capacity for fixed load, we used a boot-
strapmethod. First, we drew a random sample frompartic-
ipants, with repetitions allowed and with the same size as
the original data set. Then, for each participant in the
sample, we randomly drew two samples with the same
number of trials as in the original samples under the null
hypothesis that cue has no influence (that is, from a pool
of trials with the same load value, but randomized across
cue). For each of the two samples, s and u were esti-
mated across participants. We then calculated the differ-
ences across samples of these estimates. This procedure
was repeated 10,000 times. Finally, we determined the
number of times M that the trade-off effect of cue was
larger in the bootstrap draws than in the original sample,
that is, the number of times the effects were larger for
both s and u. Results were considered significant at
p < .05 if M/10,000 < 0.05.
To relate brain activity to behavioral performance, we

sought to estimate participant-specific capacity and pre-
cision. To have enough data for estimation, we used all
responses (mouse-clicks) from a trial. However, using all
the responses is problematic, leading to estimates less
reliable than those calculated from first-click data (see
Discussion). The problems are that the responses are not
independent within each trial (in fact they will probably
be guided by the location of the previous mouse-clicks)
and that the delay to recall (likely affecting performance)
is increasing with the number of clicks. To partly address
one of these issues, we used a modification of the probabil-
istic mixture model where we assume that guesses are
made uniformly between the last clicked position on that
trial and the red indication mark.

fMRI Experiment

Participants

A subset of 22 right-handed participants (24 ± 3 years)
participated in the fMRI experiment.

Stimuli and Procedure

The experiment was adapted from the behavioral experi-
ment, with the following differences: The fixation cross at
the beginning of the trial was made variable in length
(500, 1500, or 2500 msec) to introduce jitter. The cue
was always 1000 msec and was followed by another fixation
cross for a variable time (1000, 2000, or 3000 msec). The
stimulus was presented for 1000 msec and was followed
by a delay that lasted for 2000, 3000, or 4000 msec. The
maximum RT was set to 4000 msec. The intertrial interval
was at least 2000 msec and was calculated so that the next
trial always started together with the scanner pulse. Partic-
ipants indicated the remembered positions with a scan-
ner compatible trackball. Because this took longer than
pointing with a classical mouse, participants only indicated

the remembered position of the first item. Note that par-
ticipants still had to remember all items because the red
indication mark determining the first item was placed at
random in the circle.

Participants completed three runs in which true cue
trials (Cue 3/Load 3 and Cue 5/Load 5) and false cue trials
(Cue 3/Load 5 and Cue 5/Load 3) were shown, intermixed
with null events. There were 42 trials in each of these runs.
Intermixed with these runs, participants completed three
more runs in which we showed a different type of trials
(control trials). These runs were not used in the analysis
and are therefore not further described. Order of runs
was counterbalanced between participants.

Stimuli were presented on a back-projection screen at
the head of the scanner bore. Participants viewed the
screen through a mirror mounted on the head coil. Images
were collected with a 3T General Electrics Discovery scan-
ner (MR750,General Electrics, USA). First, a high-resolution
anatomical image was acquired using a T1-weighted 3-D
anatomical sequence. Whole-brain functional images were
collected using a T2*-weighted EPI sequence (repetition
time = 2500 msec, echo time = 30 msec, frequency field
of view = 288 mm, phase field of view = 1.0, frequency =
96, flip angle = 90°, slice thickness = 3.0 mm, voxel size
2.25 × 2.25 × 3, 40 axial slices). Runs started with six
dummy scans, and 260 images were taken in each run.
The experiment lasted around 1 hr.

Data Analysis

Runs were excluded from analyses when the realignment
procedure showed excessive motion or when more than
one third of the trials were not responded to. Only one
run from one participant met these exclusion criteria.

Data analysis was performed using the SPM8 toolbox
(www.fil.ion.ucl.ac.uk/spm/). Motion parameters (three
translations, three rotations) were used to realign the
functional volumes to the first image of each run, and all
functional images were coregistered with the anatomical
scan of the participant. Functional images were high-pass
(140 sec) filtered, and first level analyses were done on
these images. Next, we used the Dartel toolbox to create
a template from all anatomical images of all participants.
Finally, the contrast images and mask images created in
the first-level analyses were normalized toMNI space using
the Dartel template. The contrast images were further
smoothed with a Gaussian kernel of 8 mm FWHM.

The signal was modeled using a general linear model
analysis with seven predictors. Two predictors modeled
the cues: Cue 3 and Cue 5. The duration of these events
covered both the actual cue period (1000 msec) and the
variable fixation time between cue and stimulus. Next,
there were four predictors modeling the stimulus periods
of the four different trial types. The duration of these events
covered both the actual stimulus period (1000 msec) and
the variable delay between stimulus and response phase.
Finally, the response predictor included the response
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phase of all trials. The predictors were built by convolving
the actual presentation times of the events in the experi-
ment with the standard hemodynamic response function.
Time and dispersion derivatives as well as the motion
parameters were added in the design matrix. Finally, three
run-specific predictors were added to model differences
between mean activation of the runs.

In the computational model, the boost signal is active
during the stimulus and delay period in trials where
boosting occurs. We expected boosting to occur in the
trials where a cue for a high load was given. Therefore,
we contrasted the stimulus and delay period from Cue
5/Load 3 trials with Cue 3/Load 3 trials and from Cue
5/Load 5 trials with Cue 3/Load 5 trials. These contrast
images (two for each participant) were then used in a
random effects conjunction analysis, with global null hy-
pothesis. This analysis aimed to identify significant consis-
tent effects among the two contrasts. The Marsbar toolbox
(Brett, Anton, Valabregue, & Poline, 2002) was used to
extract contrast values from ROIs for subsequent analysis.
To investigate the possible functional role of the clusters
found with this analysis, we correlated across participants
the level of activation with the behavioral effects on pre-
cision and capacity. Note that the behavioral effects were
estimated from data collected outside the scanner. The
behavioral data acquired during scanning did not have
enough responses to allow estimation of the parameters
of the mixture model.

RESULTS

Model

In a computational model of vsWM, a nonspecific excitatory
signal (boosting signal) to a storage network results in an
increase of the capacity of the network (Edin et al., 2009).
We used the same model (Figure 1) to study how the pre-
cision of memories is affected by such capacity boosting.
Figure 1 shows an example of the activity of excitatory
neurons of the storage network when the same stimulus
is presented in the case of low input from the boost area
(Figure 1B) and high input from the boost area. In the case
of low input from the boost area, one of thememory traces
is lost before the end of the delay period. This memory
loss does not occur for the case with high boost input, con-
sistent with the capacity boosting effect reported before
(Edin et al., 2009). However, this ability of retaining more
items in memory may come at the cost of a lack of preci-
sion of the remembered locations, as suggested. This is
shown by larger deviations of the memory traces from
the horizontal lines indicating the locations of the items
to memorize in the high compared with the low boost
input case. To quantify this apparent trade-off effect, we
ran multiple simulations, with items presented at random
locations on a circle, using low or high input from the boost
network and loads of three or four items (300 simulations
per combination of boost and load). For each load, we

estimated the capacity by calculating the percentage of
memory traces, which persisted after the delay period.
The precision was estimated by the inverse of the stan-
dard deviation of the population vectors of the memory
traces in the collection of trials (see Methods). We found
(Figure 3) that a high top–down input for randomly lo-
cated items resulted in an increase in capacity (binomial
proportion test, p< .0001 for Loads 3 and 4), as described
previously for evenly located items (Edin et al., 2009).
Furthermore, as shown in Figure 3, we found that a high
top–down signal resulted in a decrease in precision of the
memories (F test for equality of variances, p < .0001 for
Load 3 and p = .003 for Load 4). This trade-off effect of
increasing capacity at the cost of precision was observed
for both loads. In general, performance deteriorated with
an increase in memory load, but the changes induced by
the boost remained significant for the two loads tested
(Figure 3). From thesemodeling results, we predicted that
induction of a boost signal while keeping the load constant
should result in a trade-off between capacity (increased)
and precision (decreased) of vsWM.

Behavioral Experiment

We tested the prediction of the computational model
using a behavioral experiment (Figure 2). We hypothesized

Figure 3. Model results. For both Load 3 (top) and Load 4 (bottom),
the effect of high top–down as compared with low top–down input is a
decrease in precision (inverse of standard deviation) and increase in
capacity (percentage of items in memory). Results are averaged over
300 simulations for each load and level of top–down input.
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that engagement of a boost signal could be controlled on a
trial-by-trial basis and triggered by a cue indicating the
number of items (three or five) to be expected on the cur-
rent trial. Because three is below the capacity limit for
many individuals, we expected that Cue 3 would not elicit
a boost signal. We expected Cue 5, on the other hand, to
elicit a boost signal. Crucially, the cue was false in around
20% of trials. This allowed us to detect the effect of cue on
trials with identical memory load. Assuming that the cue
has an effect on boosting, we could test our hypothesis
that boosting, accessed comparing Cue 5 and Cue 3 trials
with identical load, increases the capacity but decreases
the precision of WM.
We used the probabilistic mixture model described in

Zhang and Luck (2008) and Bays et al. (2009) to estimate
capacity and precision for the different trial types using
the first response of each trial and pooling data across
participants for all conditions in Figure 4 (see Methods).
We discarded 1% of the trials (maximum percentage dis-
carded for a single participant was 5%) according to the
criteria described in Methods. The bootstrap analysis
showed that, for both loads, vsWM performance in Cue 5
(also labeled as boost condition in Figure 4) relative to

Cue 3 (also labeled as no boost condition) trials revealed
a concomitant increase in capacity and decrease in pre-
cision ( p = .019 for Load 3 and p = .047 for Load 5). A
decrease in performance with memory load was observed
both for precision and capacity measures, but the trade-off
effect was independent of load (Figure 4), as in the model
results. Thus, the experimental evidencewas in agreement
with the hypothesized trade-off effect.

We sought to determine individual estimates of the
effect of cue on capacity and precision. To have enough
false cue trials for a single participant, we used data from
all responses (mouse clicks) in each trial. This approach
has several problems (see Methods and Discussion) lead-
ing to estimates less reliable than those calculated from
the pooled data. Despite this, we determined individual
estimates with the goal of using them for analysis with
the fMRI data (see below). However, for completeness,
we also analyzed the individual estimates per se. We did
this using a 2 × 2 ANOVA for s and u, with Cue and Load
as factors. For u (accessing capacity), there was an effect
of Load ( p = .00016), but there was no effect of Cue and
no significant interaction between Load and Cue. For s
(accessing precision), both the effects of Load and Cue
were significant ( p < .0001 and p = .013, respectively),
but there was no significant interaction. One of the pos-
sible reasons for not finding a significant effect of Cue
on smight be that not all participants engage a boost signal
differentially for Cue 5 versus Cue 3 trials (see Discussion).
In this situation, the trade-off effect would still predict
that individual changes in capacity and precision should
be correlated across participants for each load. We calcu-
lated the individual effects on capacity and precision of
having Cue 5 as compared with Cue 3 for each load, and
we found that the two effects were significantly correlated
across participants for both loads, that is, individuals ex-
hibiting a large increase in capacity for Cue 5 relative to
Cue 3 trials also tended to show a large decrease in pre-
cision (Pearson correlation .52 for Load 3 and .51 for
Load 5, p = .001 for both loads).

fMRI Results

We used fMRI data acquired using the same behavioral
paradigm to investigate possible brain activity correlates
of the trade-off effect hypothesize to result from the en-
gagement of a boost signal. The behavioral data acquired
during scanning indicated that the participants were alert
and engaged in the task. Participants responded on average
to 97% of the trials (minimum number of responses per
participant was 90%), and these responses deviated from
the target less than 22.5° on 91% of the trials (minimum
per participant was 74%).We then looked for brain regions
showing an effect of Cue 5 versus Cue 3 during the stimulus
presentation and delay period, according to the compu-
tational model. To this end, we investigate whether
there were significant consistent effects for the contrasts
(Cue 5/Load 3 vs. Cue 3/Load 3) and (Cue 5/Load 5 vs.

Figure 4. Behavioral results. Mean values (over participants) of
precision (calculated as 1/s; see Methods) and capacity (calculated as
1− u). For both Load 3 (top) and Load 5 (bottom), the effect of Cue 5 as
compared with Cue 3 (boost vs. nonboost) is a decrease in precision
and increase in capacity.
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Cue 3/Load 5) using a random effects conjunction analysis
with global null hypothesis (Nichols, Brett, Andersson,
Wager, & Poline, 2004; Price & Friston, 1997). Because
the analysis was used to define ROIs for subsequent anal-
yses, we used a lenient uncorrected threshold of p= .001,
but we restricted the analyses to clusters with more than
250 voxels. Three clusters survived these criteria (see
Table 1 and Figure 5). Two clusters were located in the left
and right superior parietal cortices. The other cluster was
located in the frontal cortex (right inferior frontal gyrus),
suggesting that differences in cue might cause differential
changes in a boost signal.

To investigate the possible role of these clusters on the
behavioral effect found, we correlated the level of activa-

tion in each participant with the magnitude of the behav-
ioral effects estimated from the behavioral experiment
outside the scanner. We extracted the contrast values
for both (Cue 5/Load 3 vs. Cue 3/Load 3) and (Cue 5/
Load 5 vs. Cue 3/Load 5) from these clusters for each partic-
ipant. We then tested for significant correlations between
the contrast values for each load and the individual preci-
sion and capacity effects from the behavioral experiment.
The precision and capacity effects were calculated from
the difference of precision (1/s) and capacity (1 − u) esti-
mates between Cue 5 and Cue 3 trials.
We found that the contrast values for Load 5 in the

right inferior frontal gyrus cluster correlated positively
with the differences in capacity ( p = .035; Figure 5AI,

Table 1. Clusters Found for the Contrasts (Cue 5/Load 3 vs. Cue 3/Load 3) and (Cue 5/Load 5 vs. Cue 3/Load 5) Using a Random
Effects Conjunction Analysis with Global Null Hypothesis

MNI Coordinates Region Voxels p Level of Local Maximum F

−18 −62 45 Left superior parietal 299 2.22e−06 5.45

30 −80 34 Right superior parietal 480 3.20e−05 4.39

49 3 18 Right inferior frontal 287 2.39e−05 4.50

Figure 5. Whole-brain results for the contrast (Cue 5/Load 3 vs. Cue 3/Load 3) and (Cue 5/Load 5 vs. Cue 3/Load 5) using a random effects
conjunction analysis with global null hypothesis. The analysis was restricted to clusters with a cluster extent threshold of 250 voxels. (A) Cluster in the
right inferior frontal sulcus. (B) Clusters in left and right superior parietal lobe. (AI and AII) Correlations between the contrast values extracted from
the right inferior frontal sulcus shown in A and the individual capacity (AI) and precision (AII) effects estimated from the behavioral experiment.
The effects are the differences for u and s between the estimates for Cue 5 and Cue 3.
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p = .085 removing two mild outliers) and negatively with
the differences in precision ( p = .048; Figure 5AII). That
is, a larger contrast value was associated with a larger
increase in capacity and with a larger decrease in precision
across participants. So, for Load 5, participants showing
larger effects on the trade-off between capacity and preci-
sion also showed larger activation in a region in the right
inferior frontal cortex for trials assumed to elicit boosting.
No other correlations were found.

DISCUSSION

In this work, we used a computational model consisting
of two modules to make the prediction of a trade-off
between capacity and precision of vsWM. In the model,
the trade-off results from a boost signal to the storage
module of WM. This effect would not have been easily pre-
dicted departing only from previous behavior experiments.
We further hypothesized that the boost signal could be
adjusted on a trial-by-trial way by cueing the upcoming
memory load. We showed in a behavioral experiment that
cueing indeed induces a trade-off between precision and
capacity of vsWM at fixed load. Presumably the cue is
eliciting the boost signal. Using fMRI, we found that the
cue effect at fixed load is associated with activation of a re-
gion in the inferior frontal gyrus, and activity in this region
across participants correlates with the amount of trade-off
showed by each individual. This region is then a candidate
region for the origin of the hypothesized boost signal.
Taken together, the results support a model of vsWM
consisting of two modules that contribute independently
to limitations in WM performance. One source of limita-
tions originates in the storage circuit and the other on
the trial-by-trial recruitment of a boosting signal.
Our present work is closely related to recent work on

the ability to adjust the capacity and the precision of WM
to task requirements (Machizawa et al., 2012; Zhang &
Luck, 2011). Zhang and Luck (2011) tested whether par-
ticipants could retain in WM information about a larger
number of items at the cost of lower precision of the infor-
mation retained, when given incentives to do so. In most
cases, they found no evidence of such a trade-off adjust-
ment. This is at odds with our findings, although there
are several plausible causes of such differences. One is that
Zhang and Luck (2011) studied WM of colors while we
used spatial locations. We used vsWM because we de-
parted from a biologically inspired model, which relies
on a neuronal topographic organization of spatial repre-
sentations. To our knowledge, an equivalent topographical
organization along a color dimension for color-sensitive
neurons has not been described experimentally, and hence,
the biological plausibility of our model in that case is less
certain. This implies that our findings will not necessarily
extend to other modalities of vWM that could underlie
the differences found. Note, however, that a functional to-
pographic organization of color representation has been
proposed, in particular in the context of models of WM

(Wei, Wang, & Wang, 2012; Johnson, Spencer, Luck, &
Schöner, 2009; Johnson, Spencer, & Schöner, 2009). The
success of these models in explaining experimental data
suggests that our model might also be applicable in the
case of WM of colors and eventually of other parametric
dimensions. More work will be needed to determine
whether our predictions for vsWM extend to WM of other
dimensions and, in general, to characterize possible mo-
dality differences in WM limitations.

Another possible origin of the differences in results
with the work of Zhang and Luck (2011) is the way in
which the two studies induce the trade-off. In our work,
we mix trials of different loads and we use cues to elicit
capacity boosting selectively, whereas Zhang and Luck
(2011) used a fixed load but different precision require-
ments in the response. Our paradigm might be recruiting
a boost signal to increase capacity, which is not recruited
in the previously used paradigm (Zhang & Luck, 2011).
Finally, interindividual variability might explain the differ-
ences found. Zhang and Luck (2011) argue that a trade-off
can be achieved only when the number of items is below
the individual capacity limit. Our results could be driven
by participants having high vsWM capacity (higher or equal
to 3), so that they could trade-off precision and capacity at
least in some of our experimental conditions. This would
be consistent with the small effect sizes reported here
(see below).

Another recent work showed that precision of vsWM
can be adjusted on a trial-by-trial basis for low memory
load (Machizawa et al., 2012). However, this study did
not test how manipulations of precision affected vsWM
capacity or whether capacity could be similarly adjusted
on a trial-by-trial basis resulting in changes of vsWM preci-
sion. One other study has suggested that a boosting signal
can increase vsWM capacity (Edin et al., 2009). In that
work, the eventual adjustment of vsWM capacity resulted
frompresentation of stimuli with different loads andwas in
this sense reactive. In the current study, we show that
vsWM capacity can be adjusted on a trial-by-trial basis,
matching the expected demand of the trial when the actual
demand (the load) is the same. More importantly, we dem-
onstrated for the first time a trade-off effect for vsWM
performance, where capacity can be increased at the cost
of precision. The specific relation between capacity and
precision as they are individually manipulated may con-
strain strongly the nature of plausible models of vsWM.

The differences found in capacity and precision in-
duced by different cues are small. One likely reason for
this is the presence of considerable interindividual varia-
bility, which results in a small effect size when data is
pooled across individuals. Some individuals were likely
not trading capacity for precision in this task, presumably
by not engaging a boost signal differentially. There are
several reasons for this. For some individuals, Loads 3
and 5 might be almost equally difficult (or easy), and
therefore, the paradigm used should not imply a change
in boost input. Some individuals were maybe not using
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the information provided by the cue. Different partici-
pants might also use different strategies. Because the
items are presented simultaneously, the participants
might memorize a pattern of dots instead of the location
of each item separately. In this case, the increase in number
of dots might not correspond to an increase in load requir-
ing a boost of capacity. We used simultaneous instead of
sequential item presentation to reduce the experimental
time. Note that we do not expect the possible encoding
of groups of positions together to bias the results for
a particular load and cue, and hence, this should not affect
the conclusions. Instead, this could introduce variability,
making the effects smaller. In summary, our experimental
results demonstrate that a trade-off between capacity and
precision can occur, which poses constraints on models
for vsWM. However, our experimental results do not allow
us to fully characterize the conditions and the extent of
such a trade-off. For example, it would be of interest to
study if the trade-off occurs only for some participants or
only below a participant-specific number of items (as the
model would suggest) or if no such limitation exists.

Using fMRI, we found three clusters showing signifi-
cant activation for high versus low cue, consistent for
both memory loads. The clusters were located bilaterally
in the superior parietal cortex and right inferior frontal
gyrus. These regions are differentially involved in trials
expected to have high versus low demands on vsWM
and hence presumably recruiting a boosting signal. An
alternative explanation is that these regions are involved
in the detection of conflicting information, in this case be-
tween the cue and the actual load. However, we found that
the strength of the activation in the frontal region correlated
across individuals with the amount of decrease in precision
and increase in capacity for Load 5. These correlations
would not be expected if the region was involved in pro-
cessing the presence of conflicting information. Hence,
our results suggest that this region might be the origin
of a boost signal. Moreover, the correlations suggest that
individualsmight differ on the engagement of such a boost
signal. There are several possible explanations for individ-
ual differences, as described above. A further possible
difference in the context of fMRI is that some individuals
might sustain the boost signal during a trial, independent
of the stimuli presented, whereas others might adjust it
upon stimulus presentation. The latest group of partici-
pants would maybe not show a behavior effect or maybe
the effect would still be present but would not be asso-
ciatedwith frontal activation detectable in our fMRI analysis.
Finally, the behavioral results obtained for single partici-
pants are estimated using all the clicks in each trial on a
behavioral experiment performed outside the scanner.
This estimation is made so that there are enough trials
per participant at the cost of using data acquired on a differ-
ent occasion and using less well-controlled data. In fact,
using all the responses (mouse clicks) in one trial is prob-
lematic for a number of reasons. One problem is that as
the number of clicks increases so does the delay to recall.

This means that the last two items clicked for Load 5 trials
will always correspond to larger delays than for Load 3
items. Another problem is that after each click it is likely
that the participant will have amemory of the clicked posi-
tion, making the responses dependent within each trial.
In fact, after the first click, the responses will be guided
by previous clicks in the same trial, and hence in the
case of memory loss, guesses will be made on just a
fraction of the circle and not on 360°. To partly address
this last caveat, we used a modified model to estimate
individual capacity and precision (see Methods). Despite
this, the individual estimates of capacity and precision are
potentially contaminated by noise, making it harder to
interpret interindividual differences. These factors might
explain why we found a correlation between behavior
and activation of the frontal area for Load 5 trials but not
Load 3 trials.
The prediction of a trade-off between capacity and pre-

cision in vsWM was derived from a biological constrained
model (Edin et al., 2009; Compte et al., 2000). This model
was originally developed to account for single neuron
activity measured in monkeys performing a vsWM task
(Funahashi, Bruce, & Goldman-Rakic, 1989). The model
was shown to reproduce the observed sustained elevated
activity during a delay period after stimulus offset and
selective for the stimulus visual location. The model was
later shown to also account for human behavior (Wei
et al., 2012; Macoveanu, Klingberg, & Tegnér, 2007) and
fMRI data (Edin et al., 2009; Macoveanu, Klingberg, &
Tegnér, 2006). Edin et al. (2009) used a modified version
of the original computational model consisting of two
coupled networks. Thismodel was used to studyWMcapac-
ity limitations and the increase of capacity by a boost input
to the storage network for the case of stimulus consisting
of locations evenly distributed across a circle. The present
work departed from the observation that in this computa-
tional model the boost signal increasing storage capacity
comes with a cost to the precision with which the mem-
ories of randomly positioned locations are stored. The
decrease in precision is a result of at least two factors.
One is the increased noise from increased nonspecific
background input to all neurons of the storage network.
This decrease in precision is also observed in the model
for Load 1. The other factor is that the boost input in-
creases the number of memory traces actually main-
tained by the network (capacity boosting). When more
memory traces are active, the probability of interference
between traces increases, resulting in decreased precision
(Wei et al., 2012). In thisworkweused the sameparameters
as in Edin et al. (2009) without further tuning. The reason
for this was that we searched for a qualitative robust predic-
tion to test experimentally and wewere not concerned with
fitting quantitatively a given result (e.g., the average capacity
or precision for each load). For simplicity, we have also kept
the simulation protocol where the boost signal and the
stimulus appear at the same time. Instead, we could have
modeled the onset of boost input occurring before the
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stimulus onset, mimicking recruitment of boost input at
the time of cue presentation. Qualitatively, the results
would remain the same as long as the extra boost input
would not destabilize the spontaneous state of the stor-
age network. Experimental results from visual WM tasks
have been used to propose and support several influential
theories accounting for WM limitations, namely the “slots
model” (Anderson et al., 2011; Zhang & Luck, 2008; Luck
& Vogel, 1997) and the “resources model” (van den Berg
et al., 2012; Huang, 2010; Bays et al., 2009; Bays & Husain,
2008; Wilken &Ma, 2004). The computational model used
was not developed to match any of these competing
theories of WM limitations. Instead, the computational
model was developed to match electrophysiological data
recorded in monkeys. In the current and previous work
(Wei et al., 2012), this more biological constrained model
shows features that are consistent with results that have
been used to support both the slots and the resources
models of WM. Concretely, the computational model
can retain information about a limited number of items.
Such a limitation is in line with the slots account of WM.
However, the model proposes a plausible mechanism
for a boost in WM capacity, which comes at a cost of a de-
crease in precision. This trade-off is in line with predictions
from a resources account ofWM.Hence, the computational
model can be seen as a possible biological implementation
of a hybrid model as proposed at a more abstract level pre-
viously (Buschman et al., 2011; Xu & Chun, 2006; Alvarez &
Cavanagh, 2004). The approach of using more biological-
based computational models is promising. First, we can
contribute by proposing concrete mechanisms underlying
the observed behaviors. Second, we can help to reconcile
more abstract models. Finally, we can formulate testable
predictions that would be hard to come across without
the model. Here, we have predicted and confirmed a
trade-off effect between capacity and precision in vsWM
performance, mediated by the activation of an area in
frontal cortex.

APPENDIX

Mathematical Description of the
Computational Model

The computational model was described by Edin et al.
(2009) and was used here without further tuning of param-
eters. The following paragraphs outline the equations
and parameters used in this study. The storage network
consisted of 1024 excitatory (E cells) and 256 inhibitory
(I cells) interconnected leaky integrate-and-fire neurons
(Tuckwell, 1988). A more detailed description of this net-
work can be found in Compte et al. (2000). Integrate-and-
fire neurons are described in terms of their subthreshold
membrane potential (Vm) according to the equation Cm

dVm/dt = −gL (Vm − EL) − Isyn − Iext, where Cm is the
membrane capacitance, gL is the leak conductance, EL is

the leak reversal potential, and Isyn and Iext are inputs
from other neurons inside or outside the network, respec-
tively. When the membrane potential reaches a given
threshold Vth, it fires an action potential (not explicitly
modeled) and is set to a reset value Vres during a refractory
period τref. For E cells, we used Cm = 0.5 nF, gL = 25 nS,
EL = −70 mV, Vth = −50 mV, Vres = −60 mV, and τref =
2 msec; for I cells, we used Cm = 0.2 nF, gL = 20 nS, EL =
−70mV, Vth =−50mV, Vres =−60mV, and τref = 1msec.

The network had a ring structure so that E and I cells
were spatially distributed on a ring, where nearby neurons
encoded similar spatial locations θ (Figure 1A). Connec-
tions were tuned according to this organization so that
the connection strength gsyn,ij between cells i and j de-
pended on the difference in preferred angle between the
cells as gsyn,ij = W(θi − θj) Gsyn, where W(θi − θj) = J− +
( J+ + J−) exp(−(θi − θj)

2/σ2), with J− set to satisfy a nor-
malization condition SjW(θi− θj)=1.WeusedσE to E=9.4°
and σE to I = σI to E = 32.4, J+E to E = 5.7, J+E to I = J+I to E =
1.4, J+I to I = 1.5. So, connectivity between E and I cells
was wider and flatter than between E cells (Figure 1A).
The connectivity between I cells was not spatially tuned.
The strengths of the connections were GE to E = 0.7 nS,
GE to I = 0.49 nS, GI to E = 0.935 nS, GI to I = 0.7413 nS.

All neurons received uncorrelated random background
excitatory input modeled as spike trains described by a
Poisson process with a rate of 1800 Hz, through a con-
ductance gext to E = 6.5 nS, gext to I = 5.8 nS. Upon pre-
sentation of a visual stimulus at θstim, E cells received an
input modeled as current injection: Istim(θ,θstim) = a exp
{m [cos(2 π/360(θ − θstim)) − 1]}, where a = 0.025 nA
and m = 39.

Postsynaptic currents were described by the equation
Isyn = gsyn s (Vm − Vsyn), where gsyn is a synaptic conduc-
tance, s is a synaptic gating variable, and Vsyn is the synaptic
reversal potential (Vsyn = 0 for excitatory synapses, Vsyn =
−70 mV for inhibitory synapses). Recurrent excitatory
connections were modeled to follow the dynamics of
NMDAR-mediated transmission, external excitatory inputs
to follow AMPAR-mediated transmission, and inhibitory
inputs to follow GABAAR transmission. AMPAR and
GABAAR gating variables were modeled as an instanta-
neous jump of magnitude 1 when a presynaptic action
potential occurs, followed by an exponential decay with
time constant 2 msec for AMPA and 10 msec for GABAA.
The NMDAR conductance is voltage dependent, and
this was modeled by multiplying gsyn by 1/(1 + [Mg2+]
exp(−0.062 Vm)/3.57) with [Mg2+] = 1.0 mM. The dy-
namics of NMDA gatings weremodeled by ds/dt=−s/τs+
αs x(1 − s) and dx/dt = −x/τx + �i δ(t − ti), where x is a
synaptic variable representing neurotransmitter concen-
tration in the synapse, ti are the times of presynaptic
action potentials, τs = 100 msec is the decay time, τx =
2 msec the rise time, and αs = 0.5 kHz controls saturation
of NMDAR channels.

The boost network only differs from the storage network
in that its connectivity was not tuned (all J+=1). The values
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used for the conductances were gE to E = 0.968 nS, gE to I =
0.723 n, gI to E = 3.66 nS, gI to I = 2.832 nS, gext to E = 3.0 nS,
gext to I = 2.3803 nS. The boost input was modeled to im-
pact neurons in the storage network through AMPARs,
with conductance of 9 nS.

The integration of the model equations was done
using a second-order Runge-Kutta algorithm in a custom
code implemented in C++.
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